Skip to main content

Advertisement

Log in

A Novel Mutation in a Critical Region for the Methyl Donor Binding in DNMT3B Causes Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome (ICF)

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is an extremely rare autosomal recessive disease. The immune phenotype is characterized by hypogammaglobulinemia in the presence of B cells. T cell lymphopenia also develops in some patients. We sought to further investigate the immune defect in an ICF patient with a novel missense mutation in DNMT3B and a severe phenotype.

Methods

Patient lymphocytes were examined for subset counts, immunoglobulin levels, T and B cell de novo production (via excision circles) and receptor repertoire diversity. Mutated DNMT3B protein structure was modeled to assess the effect of a mutation located outside of the catalytic region on protein function.

Results

A novel homozygous missense mutation, Ala585Thr, was found in DNMT3B. The patient had decreased B cell counts with hypogammaglobulinemia, and normal T cell counts. CD4+ T cells decreased over time, leading to an inversion of the CD4+ to CD8+ ratio. Excision circle copy numbers were normal, signifying normal de novo lymphocyte production, but the ratio between naïve and total B cells was low, indicating decreased in vivo B cell replication. T and B cell receptor repertoires displayed normal diversity. Computerized modeling of the mutated Ala585 residue suggested reduced thermostability, possibly affecting the enzyme kinetics.

Conclusions

Our results highlight the existence of a T cell defect that develops over time in ICF patient, in addition to the known B cell dysfunction. With intravenous immunoglobulin (IVIG) treatment ameliorating the B cell defect, the extent of CD4+ lymphopenia may determine the severity of ICF immunodeficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25:173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1:2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1999;96:14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Greef JC, Wang J, Balog J, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet. 2011;88:796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thijssen PE, Ito Y, Grillo G, et al. Mutations in CDCA7 and HELLS cause immunodeficiency-centromeric instability-facial anomalies syndrome. Nat Commun. 2015;6:7870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heyn H, Vida E, Sayols S, et al. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics. 2012;7:542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simo-Riudalbas L, Diaz-Lagares A, Gatto S, et al. Genome-wide DNA methylation analysis identifies novel hypomethylated non-pericentromeric genes with potential clinical implications in ICF syndrome. PLoS One. 2015;10, e0132517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walton EL, Francastel C, Velasco G. Dnmt3b prefers germ line genes and centromeric regions: lessons from the ICF syndrome and cancer and implications for diseases. Biology (Basel). 2014;3:578–605.

    CAS  Google Scholar 

  9. Hagleitner MM, Lankester A, Maraschio P, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45:93–9.

    Article  CAS  PubMed  Google Scholar 

  10. Weemaes CMR, van Tol MJD, Wang J, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21:1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lev A, Simon AJ, Bareket M, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7, e30494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lev A, Simon AJ, Broides A, et al. Thymic function in MHC class II-deficient patients. J Allergy Clin Immunol. 2013;131:831–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kraus M, Lev A, Simon A. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol. 2014;34:561–72.

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:393–303.

  16. Li MX, Gui HS, Kwan JSH, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 2012;40(7):e53.

  17. Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol. 2014;1137:1–15.

    Article  CAS  PubMed  Google Scholar 

  18. Eyal E, Najmanovich R, McConkey BJ, Edelman M, Sobolev V. Importance of solvent accessibility and contact surfaces in modeling side-chain conformations in proteins. J Comput Chem. 2004;25:712–24.

    Article  CAS  PubMed  Google Scholar 

  19. Nussinov R, Wolfson HJ. Efficient detection of three-dimensional structural motifs in biological macaromolecules by computer vision techniques. Proc Natl Acad Sci. 1991;88:10495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DE Pires V, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42:314–9.

    Article  CAS  Google Scholar 

  21. DE Pires V, Ascher DB, Blundell TL. MCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014;30:335–42.

    Article  CAS  PubMed  Google Scholar 

  22. Worth CL, Preissner R, Blundell TL. SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011;39:215–22.

    Article  CAS  Google Scholar 

  23. Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P. MAESTRO-multi agent stability prediction upon point mutations. BMC Bioinformatics. 2015;16:116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:306–10.

    Article  CAS  Google Scholar 

  25. Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 2015;7:247–65.

  26. Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure. 2008;16:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo X, Wang L, Li J, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 2015;517:640–4.

    Article  CAS  PubMed  Google Scholar 

  28. Klimasauskas S, Kumar S, Roberts RJ, Cheng X. Hhal methyltransferase flips its target base out of the DNA helix. Cell. 1994;76:357–69.

    Article  CAS  PubMed  Google Scholar 

  29. Wijmenga C, Hansen RS, Gimelli G, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16:509–17.

  30. Ehrlich M, Sanchez C, Shao C, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41:253–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanco-Betancourt CE, Moncla A, Milili M, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103:2683–90.

    Article  CAS  PubMed  Google Scholar 

  32. Ehrlich M, Buchanan KL, Tsien F, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10:2917–31.

    Article  CAS  PubMed  Google Scholar 

  33. Sterlin D, Velasco G, Moshous D, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.

    Article  CAS  PubMed  Google Scholar 

  34. Yehezkel S, Segev Y, Viegas-Péquignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17:2776–89.

    Article  CAS  PubMed  Google Scholar 

  35. Pezzolo A, Prigione I, Facchetti P, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108:310–2.

    Article  CAS  PubMed  Google Scholar 

  36. Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133:1183–92.

    Article  CAS  PubMed  Google Scholar 

  37. Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2015;44:D862–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD): 2003 update. Hum Mutat. 2003;21:577–81.

    Article  CAS  PubMed  Google Scholar 

  39. Shearer WT, Rosenblatt HM, Gelman RS, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the pediatric AIDS clinical trials group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patient’s family for their cooperation. Raz Somech is supported by the Jeffrey Modell Foundation (JMF).

Authorship Contributions

B.P.S, Y.A. and R.S. diagnosed, followed, and treated the patient.

E.R., A.L., R.S, and A.J.S. conceived and designed the experiments.

E.R., A.L. A.J.S., and S.F.B. performed the experiments.

E.E., O.B., and N.K., performed the bioinformatic analysis

E.R., A.L., E.E., R.S., and A.J.S. analyzed and interpreted results and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raz Somech or Amos J. Simon.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Erez Rechavi and Atar Lev have equally contributed to the study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 50.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechavi, E., Lev, A., Eyal, E. et al. A Novel Mutation in a Critical Region for the Methyl Donor Binding in DNMT3B Causes Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome (ICF). J Clin Immunol 36, 801–809 (2016). https://doi.org/10.1007/s10875-016-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0340-z

Keywords

Navigation