Skip to main content

Advertisement

Log in

Mycobacterium Tuberculosis-Specific Memory NKT Cells in Patients with Tuberculous Pleurisy

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Natural killer T (NKT) cells from mouse and human play a protective role in the immune responses against the infection of Mycobacterium tuberculosis. However, the characteristic of CD3+TCRvβ11+ NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that the numbers of CD3+TCRvβ11+ NKT cells in pleural fluid mononuclear cells (PFMCs) were significantly lower than those in peripheral blood mononuclear cells (PBMCs). However, CD3+TCRvβ11+ NKT cells from PFMCs spontaneously expressed high levels of CD69 and CD25 and effector memory phenotypes of CD45ROhighCD62LlowCCR7low. After stimulation with the antigens of M. tuberculosis, CD3+TCRvβ11+ NKT cells from PFMCs produced high levels of IFN-γ. Sorted CD3+TCRvβ11+ NKT cells from PFMCs cultured with antigen presenting cells (APCs) produced IFN-γ protein and mRNA. The production of IFN-γ could be completely inhibited by AG490 and Wortmannin. In addition, CD3+TCRvβ11+ NKT cells from PFMCs expressed higher levels of Fas (CD95), FasL (CD178) and perforin but lower levels of granzyme B compared with those from PBMCs. Taken together, our data demonstrated for the first time that M. tuberculosis-specific CD3+TCRvβ11+ NKT cells participated in the local immune responses against M. tuberculosis through the production of IFN-γ and the secretion of cytolytic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis report. 2012.

  2. Ahmad S. New approaches in the diagnosis and treatment of latent tuberculosis infection. Respir Res. 2010;11:169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO global surveillance and monitoring project. JAMA. 1999;282(7):677–86.

    Article  CAS  PubMed  Google Scholar 

  4. Landry J, Menzies D. Preventive chemotherapy. Where has it got us? Where to go next? Int J Tuberc Lung Dis. 2008;12(12):1352–64.

    CAS  PubMed  Google Scholar 

  5. Kaufmann SH. Tuberculosis: back on the immunologists’ agenda. Immunity. 2006;24(4):351–7.

    Article  CAS  PubMed  Google Scholar 

  6. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. Innate invariant NKT cells recognize mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog. 2008;4(12):e1000239.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what’s in a name? Nat Rev Immunol. 2004;4(3):231–7.

    Article  CAS  PubMed  Google Scholar 

  8. Van Kaer L. alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol. 2005;5(1):31–42.

    Article  PubMed  Google Scholar 

  9. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114(10):1379–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wermeling F, Lind SM, Jordö ED, Cardell SL, Karlsson MC. Invariant NKT cells limit activation of autoreactive CD1d-positive B cells. J Exp Med. 2010;207(5):943–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Montoya CJ, Cataño JC, Ramirez Z, Rugeles MT, Wilson SB, Landay AL. Invariant NKT cells from HIV-1 or mycobacterium tuberculosis-infected patients express an activated phenotype. Clin Immunol. 2008;127(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.

    Article  CAS  PubMed  Google Scholar 

  13. Li ZT, Yang BY, Wu CY. Differences between CD3+ TCRvα24+ NKT cell and CD3+ TCRvβ11+ NKT cell in PBMC. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27(9):949–53.

    CAS  PubMed  Google Scholar 

  14. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011;11(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  15. Sutherland JS, Jeffries DJ, Donkor S, Walther B, Hill PC, Adetifa IM, et al. High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting. Tuberculosis (Edinb). 2009;89(6):398–404.

    Article  CAS  Google Scholar 

  16. Chackerian A, Alt J, Perera V, Behar SM. Activation of NKT cells protects mice from tuberculosis. Infect Immun. 2002;70(11):6302–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gansert JL, Kiessler V, Engele M, Wittke F, Röllinghoff M, Krensky AM, et al. Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol. 2003;170(6):3154–61.

    Article  CAS  PubMed  Google Scholar 

  18. Sada-Ovalle I, Sköld M, Tian T, Besra GS, Behar SM. Alpha-galactosylceramide as a therapeutic agent for pulmonary mycobacterium tuberculosis infection. Am J Respir Crit Care Med. 2010;182(6):841–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, et al. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J Immunol. 2009;183(3):1644–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to mycobacterium tuberculosis infection. J Exp Med. 1993;178(6):2249–54.

    Article  CAS  PubMed  Google Scholar 

  21. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335(26):1941–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335(26):1956–61.

    Article  CAS  PubMed  Google Scholar 

  23. Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest. 1997;100(11):2658–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A. Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest. 2002;110(6):793–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chan AC, Neeson P, Leeansyah E, Tainton K, Quach H, Prince HM, et al. Testing the NKT cell hypothesis in lenalidomide-treated myelodysplastic syndrome patients. Leukemia. 2010;24(3):592–600.

    Article  CAS  PubMed  Google Scholar 

  26. Lucas M, Gadola S, Meier U, Young NT, Harcourt G, Karadimitris A, et al. Frequency and phenotype of circulating Valpha24/Vbeta11 double-positive natural killer T cells during hepatitis C virus infection. J Virol. 2003;77(3):2251–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. van der Vliet HJ, Molling JW, von Blomberg BM, Kölgen W, Stam AG, de Gruijl TD, et al. Circulating Valpha24 + Vbeta11+ NKT cell numbers and dendritic cell CD1d expression in hepatitis C virus infected patients. Clin Immunol. 2005;114(2):183–9.

    Article  PubMed  Google Scholar 

  28. Ward SM, Jonsson JR, Sierro S, Clouston AD, Lucas M, Vargas AL, et al. Virus-specific CD8+ T lymphocytes within the normal human liver. Eur J Immunol. 2004;34(6):1526–31.

    Article  CAS  PubMed  Google Scholar 

  29. Baev DV, Peng XH, Song L, Barnhart JR, Crooks GM, Weinberg KI, et al. Distinct homeostatic requirements of CD4+ and CD4- subsets of Valpha24-invariant natural killer T cells in humans. Blood. 2004;104(13):4150–6.

    Article  CAS  PubMed  Google Scholar 

  30. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol. 2005;35(5):1399–407.

    Article  CAS  PubMed  Google Scholar 

  31. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L, et al. Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest. 2001;108(9):1331–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fujiwara H, Tsuyuguchi I. Frequency of tuberculin-reactive T-lymphocytes in pleural fluid and blood from patients with tuberculous pleurisy. Chest. 1986;89(4):530–2.

    Article  CAS  PubMed  Google Scholar 

  33. Barnes PF, Fong SJ, Brennan PJ, Twomey PE, Mazumder A, Modlin RL. Local production of tumor necrosis factor and IFN-gamma in tuberculous pleuritis. J Immunol. 1990;145(1):149–54.

    CAS  PubMed  Google Scholar 

  34. Li L, Qiao D, Fu X, Lao S, Zhang X, Wu C. Identification of M. tuberculosis-specific Th1 cells expressing CD69 generated in vivo in pleural fluid cells from patients with tuberculous pleurisy. PLoS One. 2011;6(8):e23700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li L, Qiao D, Fu X, Lao S, Zhang X, Wu C. Identification of Mycobacterium tuberculosis-specific Th1, Th17 and Th22 cells using the expression of CD40L in tuberculous pleurisy. PLoS One. 2011;6(5):e20165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li L, Qiao D, Zhang X, Liu Z, Wu C. The immune responses of central and effector memory BCG-specific CD4+ T cells in BCG-vaccinated PPD + donors were modulated by Treg cells. Immunobiology. 2011;216(4):477–84.

    Article  CAS  PubMed  Google Scholar 

  37. Qiao D, Li L, Guo J, Lao S, Zhang X, Zhang J, et al. Mycobacterium tuberculosis culture filtrate protein 10-specific effector/memory CD4+ and CD8+ T cells in tubercular pleural fluid, with biased usage of T cell receptor Vβ chains. Infect Immun. 2011;79(8):3358–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Feng L, Li L, Liu Y, Qiao D, Li Q, Fu X, et al. B lymphocytes that migrate to tuberculous pleural fluid via the SDF-1/CXCR4 axis actively respond to antigens specific for Mycobacterium tuberculosis. Eur J Immunol. 2011;41(11):3261–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wu SH, Chu JJ, Chiang CD. Increased soluble Fas ligand concentration in tuberculous pleural effusion. J Formos Med Assoc. 2001;100(1):32–4.

    CAS  PubMed  Google Scholar 

  40. Fayyazi A, Eichmeyer B, Soruri A, Schweyer S, Herms J, Schwarz P, et al. Apoptosis of macrophages and T cells in tuberculosis associated caseous necrosis. J Pathol. 2000;191(4):417–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and healthy volunteers for their perseverance and commitment to this study. This study was supported by a grant from Program of China during the twelfth Five-Year Plan Period (2013ZX10003007-002-003) and the grant from the introduction of innovative R&D team program of Guangdong Province (2009010058).

Disclosure

The authors declare that they have no conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, B., Zhang, Y. et al. Mycobacterium Tuberculosis-Specific Memory NKT Cells in Patients with Tuberculous Pleurisy. J Clin Immunol 34, 979–990 (2014). https://doi.org/10.1007/s10875-014-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0090-8

Keywords

Navigation