Skip to main content

Advertisement

Log in

Treatment with Low Doses of Polyclonal Immunoglobulin Improves B Cell Function During Immune Reconstitution in a Murine Model

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Propose

After autologous stem cell transplantation (ASCT) the immunological B cell compartment recovers slowly. Delays on the recovery of B cell function after autologous stem cell transplantation are due to the low lymphocytes count and to their intrinsic dysfunction.

Methods

We studied the in vivo B cell reconstitution after ASCT examining the independent effect of polyclonal IgG (PolyIg), Fab or Fc fragments infusions in a murine animal model during a period of 12 weeks. These molecules were used in low doses, mimicking the recommended use of IVIg in the case of hypogammaglobulinemia in humans. Flow cytometry analysis and ELISA tests were conducted to monitor the reconstitution of B cells and serum immunoglobulin production. Panama blot and PCA factor 1 analysis were used to study the kinetics of immunoglobulin repertoires reconstitution. Mechanistic studies were also performed using in vitro cell culture.

Results

During follow-up after ASCT, peripheral B cells expand independently of treatment, correcting the immediate increase in sBAFF (soluble B cell activating factor) induced by previous intense myeloablation. Treatments with Fab and Fc fragments infusions promote significant IgM and IgG production comparing to control. Although the complete recovery of antibody repertoire is only achieved at the end of follow-up after ASCT, there is an earlier and significantly stronger recovery in the treated mice, which is evident at 9 weeks after ASCT. At 30 weeks after ASCT, normal values of antibody repertoire were detected in all individuals. Mechanistic studies show that Fab and Fc fragments promote IgG1 production by indirect pathways.

Conclusions

The results presented here demonstrate that polyclonal immunoglobulin indirectly improves the function of the reconstituted B cells and their IgG production by means of Fc-mediated effects on bystander cells. These results further stimulate the discussion about the advantages of IVIg therapy during immune reconstitution after human ASCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Porrata LF, Litzow MR, Markovic SN. Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc. 2001;76(4):407–12.

    PubMed  CAS  Google Scholar 

  2. Storek J, Geddes M, Khan F, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol. 2008;30(4):425–37.

    Article  PubMed  Google Scholar 

  3. Fry TJ, Mackall CL. Immune reconstitution following hematopoietic progenitor cell transplantation: challenges for the future. Bone Marrow Transplant. 2005;35 Suppl 1:S53–7.

    Article  PubMed  Google Scholar 

  4. Auletta JJ, Lazarus HM. Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant. 2005;35(9):835–57.

    Article  PubMed  CAS  Google Scholar 

  5. De Groot AS, Moise L, McMurry JA, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes". Blood. 2008;112(8):3303–11.

    Article  PubMed  Google Scholar 

  6. Joao C, Ogle BM, Geyer S. Immunoglobulin promotes the diversity and the function of T cells. Eur J Immunol. 2006;36(7):1718–28.

    Article  PubMed  CAS  Google Scholar 

  7. Pires AE, Afonso AF, Queiros A, et al. Treatment with polyclonal immunoglobulin during T-cell reconstitution promotes naive T-cell proliferation. J Immunother. 2010;33(6):618–25.

    Article  PubMed  CAS  Google Scholar 

  8. Joao C, Ogle BM, Gay-Rabinstein C, et al. B cell-dependent TCR diversification. J Immunol. 2004;172(8):4709–16.

    PubMed  CAS  Google Scholar 

  9. Lacroix-Desmazes S, Kaveri SV, Mouthon L, et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods. 1998;216(1–2):117–37.

    Article  PubMed  CAS  Google Scholar 

  10. Omwandho CO, Gruessner SE, Roberts TK, et al. Intravenous immunoglobulin (IVIG): modes of action in the clinical management of recurrent pregnancy loss (RPL) and selected autoimmune disorders. Clin Chem Lab Med. 2004;42(4):359–70.

    Article  PubMed  CAS  Google Scholar 

  11. Pildal J, Gotzsche PC. Polyclonal immunoglobulin for treatment of bacterial sepsis: a systematic review. Clin Infect Dis. 2004;39(1):38–46.

    Article  PubMed  CAS  Google Scholar 

  12. Nimmerjahn F, Ravetch JV. Antibody-mediated modulation of immune responses. Immunol Rev. 2010;236:265–75.

    Article  PubMed  CAS  Google Scholar 

  13. Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4 + CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111(2):715–22.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson D, Ali K, Blanchette V, et al. Guidelines on the use of intravenous immune globulin for hematologic conditions. Transfus Med Rev. 2007;21(2 Suppl 1):S9–S56.

    Article  PubMed  Google Scholar 

  15. Snapper CM, Finkelman FD, Paul WE. Differential regulation of IgG1 and IgE synthesis by interleukin 4. J Exp Med. 1988;167(1):183–96.

    Article  PubMed  CAS  Google Scholar 

  16. Heidt S, Roelen DL, Eijsink C, et al. Intravenous immunoglobulin preparations have no direct effect on B cell proliferation and immunoglobulin production. Clin Exp Immunol. 2009;158(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  17. Chen J, Trounstine M, Alt FW, et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol. 1993;5(6):647–56.

    Article  PubMed  CAS  Google Scholar 

  18. Fahey JL, Robinson AG. Factors controlling serum gamma-globulin concentration. J Exp Med. 1963;118:845–68.

    Article  PubMed  CAS  Google Scholar 

  19. Spiegelberg HL, Grey HM. Catabolism of human gamma-G immunoglobulins of different heavy chain subclasses. II. Catabolism of gamma-G myeloma proteins in heterologous species. J Immunol. 1968;101(4):711–6.

    PubMed  CAS  Google Scholar 

  20. Haury M, Grandien A, Sundblad A, et al. Global analysis of antibody repertoires. 1. An immunoblot method for the quantitative screening of a large number of reactivities. Scand J Immunol. 1994;39(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  21. Fesel C, Goulart LF, Silva Neto A, et al. Increased polyclonal immunoglobulin reactivity toward human and bacterial proteins is associated with clinical protection in human Plasmodium infection. Malar J. 2005;4:5.

    Article  PubMed  Google Scholar 

  22. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev. 2010;2:433–59.

    Article  Google Scholar 

  23. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47.

    Article  PubMed  CAS  Google Scholar 

  24. Negi VS, Elluru S, Siberil S, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27(3):233–45.

    Article  PubMed  CAS  Google Scholar 

  25. Anthony RM, Nimmerjahn F, Ashline DJ, et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320(5874):373–6.

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670–3.

    Article  PubMed  CAS  Google Scholar 

  27. Nimmerjahn F, Ravetch JV. The antiinflammatory activity of IgG: the intravenous IgG paradox. J Exp Med. 2007;204(1):11–5.

    Article  PubMed  CAS  Google Scholar 

  28. Hong Y, Peng Y, Xiao H, Mi M, Munn D, He Y. Immunoglobulin Fc fragment tagging allows strong activation of endogenous CD4 T cells to reshape the tumor milieu and enhance the antitumor effect of lentivector immunization. J Immunol. 2012;188(10):4819–27.

    Article  PubMed  CAS  Google Scholar 

  29. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10(5):328–43.

    Article  PubMed  CAS  Google Scholar 

  30. Morgan EL, Weigle WO. The requirement for adherent cells in the Fc fragment-induced proliferative response of murine spleen cells. J Exp Med. 1979;150(2):256–66.

    Article  PubMed  CAS  Google Scholar 

  31. Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol. 2005;17(3):282–9.

    Article  PubMed  CAS  Google Scholar 

  32. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol. 2001;167(11):6225–31.

    PubMed  CAS  Google Scholar 

  33. Mackay F, Leung H. The role of the BAFF/APRIL system on T cell function. Semin Immunol. 2006;18(5):284–9.

    Article  PubMed  CAS  Google Scholar 

  34. Woodland RT, Schmidt MR, Thompson CB. BLyS and B cell homeostasis. Semin Immunol. 2006;18(5):318–26.

    Article  PubMed  CAS  Google Scholar 

  35. Rolink AG, Tschopp J, Schneider P, et al. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol. 2002;32(7):2004–10.

    Article  PubMed  CAS  Google Scholar 

  36. Gorelik L, Gilbride K, Dobles M, et al. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med. 2003;198(6):937–45.

    Article  PubMed  CAS  Google Scholar 

  37. Sarantopoulos S, Stevenson KE, Kim HT, et al. High levels of B-cell activating factor in patients with active chronic graft-versus-host disease. Clin Cancer Res. 2007;13(20):6107–14.

    Article  PubMed  CAS  Google Scholar 

  38. Yoshimoto K, Takahashi Y, Ogasawara M, et al. Aberrant expression of BAFF in T cells of systemic lupus erythematosus, which is recapitulated by a human T cell line, Loucy. Int Immunol. 2006;18(7):1189–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Isabel Gordo, Nuno Costa and Vasco Barreto, from Instituto Gulbenkian de Ciência, for providing E. coli bacteria and detailed protocols for its growth; for helping with flow cytometry analyses and animal handling; and for providing advice to perform B cell cultures.

We would like also to thank Teresa Faria, from Instituto Português de Oncologia, for helping with flow cytometry analyses and to Diane Jelinek and Xiaosheng Wu, from Mayo Clinic, for valuable discussions regarding the importance of the JHT experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina João.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afonso, A.B., Justo, L.N., Queirós, A.C. et al. Treatment with Low Doses of Polyclonal Immunoglobulin Improves B Cell Function During Immune Reconstitution in a Murine Model. J Clin Immunol 33, 407–419 (2013). https://doi.org/10.1007/s10875-012-9802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9802-0

Keywords

Navigation