Skip to main content

Advertisement

Log in

IL-17 Contributes to the Development of Chronic Rejection in a Murine Heart Transplant Model

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Although interleukin-17 (IL-17) has been reported to participate in the pathogenesis of infectious, autoimmune and allergic disorders, the precise role in allograft rejection remains uncertain. This study illustrates that IL-17 contributes to the pathogenesis of chronic allograft rejection.

Result

Utilizing a murine heterotopic heart transplant model system, IL-17-deficient recipient mice had decreased allograft inflammatory cell recruitment, decreased IL-6, MCP-1, and KC production, and reduced graft coronary artery disease (GCAD). Intragraft gamma delta (γδ) T cells appear to be the predominant source of IL-17 production.

Conclusion

Therefore, IL-17 neutralization may provide a potential target for novel therapeutic treatment for cardiac allograft rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Aurora P, Christie J, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fourth official adult heart transplant report—2007. J Heart Lung Transplant. 2007;26:769–81.

    Article  PubMed  Google Scholar 

  2. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003;14:155–74.

    Article  CAS  PubMed  Google Scholar 

  3. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  CAS  PubMed  Google Scholar 

  4. Oboki K, Ohno T, Saito H, Nakae S. Th17 and allergy. Allergol Int. 2008;57:121–34.

    Article  CAS  PubMed  Google Scholar 

  5. Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev. 2008;226:57–79.

    Article  CAS  PubMed  Google Scholar 

  6. Van Kooten C, Boonstra JG, Paape ME, Fossiez F, Banchereau J, Lebecque S, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol. 1998;9:1526–34.

    PubMed  Google Scholar 

  7. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol. 2002;197:322–32.

    Article  CAS  PubMed  Google Scholar 

  8. Tesar BM, Du W, Shirali AC, Walker WE, Shen H, Goldstein DR. Aging augments IL-17 T-cell alloimmune responses. Am J Transplant. 2009;9:54–63.

    Article  CAS  PubMed  Google Scholar 

  9. Antonysamy MA, Fanslow WC, Fu F, Li W, Qian S, Troutt AB, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol. 1999;162:577–84.

    CAS  PubMed  Google Scholar 

  10. Li J, Simeoni E, Fleury S, Dudler J, Fiorini E, Kappenberger L, et al. Gene transfer of soluble interleukin-17 receptor prolongs cardiac allograft survival in a rat model. Eur J Cardiothorac Surg. 2006;29:779–83.

    Article  PubMed  Google Scholar 

  11. Tang JL, Subbotin VM, Antonysamy MA, Troutt AB, Rao AS, Thomson AW. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation. 2001;72:348–50.

    Article  CAS  PubMed  Google Scholar 

  12. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  CAS  PubMed  Google Scholar 

  13. Rickel EA, Siegel LA, Yoon BR, Rottman JB, Kugler DG, Swart DA, et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J Immunol. 2008;181:4299–310.

    CAS  PubMed  Google Scholar 

  14. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity. 2003;17:375–87.

    Article  Google Scholar 

  15. Fischbein MP, Ardehali A, Yun J, Schoenberger S, Laks H, Irie Y, et al. CD40 signaling replaces CD4+ lymphocytes and its blocking prevents chronic rejection of heart transplants. J Immunol. 2000;165:7316–22.

    CAS  PubMed  Google Scholar 

  16. Tanaka M, Fedoseyeva EV, Robbins RC. Graft coronary artery disease in murine cardiac allografts: proposal to meet the need for standardized assessment. J Heart Lung Transplant. 2005;24:316–22.

    Article  PubMed  Google Scholar 

  17. Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med. 2008;205:3133–44.

    Article  CAS  PubMed  Google Scholar 

  18. Glimcher LH, Townsend MJ, Sullivan BM, Lord GM. Lord. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol. 2004;4:900–11.

    Article  CAS  PubMed  Google Scholar 

  19. Fujiwara M, Hirose K, Kagami S, Takatori H, Wakashin H, Tamachi T, et al. T-bet inhibits both TH2 cell-mediated eosinophil recruitment and TH17 cell-mediated neutrophil recruitment into the airways. J Allergy Clin Immunol. 2007;119:662–70.

    Article  CAS  PubMed  Google Scholar 

  20. Fischbein MP, Yun J, Laks H, Irie Y, Oslund-Pinderski L, Fishbein MC, et al. Regulated interleukin-10 expression prevents chronic rejection of transplanted hearts. J Thorac Cardiovasc Surg. 2003;126:216–23.

    Article  CAS  PubMed  Google Scholar 

  21. Fischbein MP, Yun J, Laks H, Irie Y, Fishbein MC, Espejo M, et al. CD8+ lymphocytes augment chronic rejection in a MHC class II mismatched model. Transplantation. 2001;71:1146–53.

    Article  CAS  PubMed  Google Scholar 

  22. Salomon RN, Hughes CC, Schoen FJ, Payne DD, Pober JS, Libby P. Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol. 1991;138:791–8.

    CAS  PubMed  Google Scholar 

  23. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183:2593–603.

    Article  CAS  PubMed  Google Scholar 

  24. Starnes T, Robertson M, Sledge G, Kelich S, Nakshatri H, Broxmeyer H, et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes. Regulates angiogenesis and endothelial cell cytokine production. J Immunology. 2001;167:4137–40.

    CAS  Google Scholar 

  25. Eid R, Rao D, Zhou J, Lo S, Ranjbaran H, Gallo A, et al. Interleukin-17 and Inteferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation. 2009;119:1424–32.

    Article  CAS  PubMed  Google Scholar 

  26. Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100:550–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature. 2000;403:207–11.

    Article  CAS  PubMed  Google Scholar 

  28. Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29:90–100.

    Article  CAS  PubMed  Google Scholar 

  29. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, et al. Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50.

    Article  CAS  PubMed  Google Scholar 

  30. Ivanov II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol. 2007;19:409–17.

    Article  CAS  PubMed  Google Scholar 

  31. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGF-ß and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat Immunol. 2007;8:1390–7.

    Article  CAS  PubMed  Google Scholar 

  32. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Falk Research Fund, Department of Cardiothoracic Surgery at Stanford University Medical School, American Association for Thoracic Surgery (Norman E. Shumway award to MPF), National Institute of Biomedical Innovation (ID 05-24; H.S.), Ministry of Education, Culture, Sports, Science, and Technology (MEXT) (20790700: N.K.), and Program for Improvement of Research Environment for Young Researchers, The Special Coordination Funds for Promoting Science and Technology of MEXT (S.N.). The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Fischbein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, S., Nakae, S., Axtell, R.C. et al. IL-17 Contributes to the Development of Chronic Rejection in a Murine Heart Transplant Model. J Clin Immunol 30, 235–240 (2010). https://doi.org/10.1007/s10875-009-9366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9366-9

Keywords

Navigation