Skip to main content

Advertisement

Log in

Oral Tolerization with Cardiac Myosin Peptide (614–629) Ameliorates Experimental Autoimmune Myocarditis: Role of Stat 6 Genes in BALB/CJ Mice

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Experimental autoimmune myocarditis (EAM) is mediated by myocardial infiltration by myosin-specific T cells secreting inflammatory cytokines.

Materials and methods

To clarify the role of cytokines in EAM, we compared STAT 6-deficient (−/−) with STAT 4−/− and wild-type (BALB/CJ) mice following immunization with cardiac myosin peptide (614–629).

Results

Wild-type mice developed severe disease with a small increase in severity in STAT 6−/− mice, while STAT 4−/− mice were resistant to EAM. STAT 6−/− mice had increased splenocyte proliferation and INF-γ production versus wild type, while STAT 4−/− mice had decreased proliferation and INF-γ. Following oral administration of myosin (614–629), tolerization was induced in wild-type mice evidenced by amelioration of myocarditis and up-regulation of IL-4. Adoptive transfer of splenocytes from orally tolerized mice resulted in inhibition of disease in STAT 6−/− mice.

Conclusion

These results demonstrate that oral tolerization ameliorates EAM in BALB/CJ mice and indicate a down-regulatory role for STAT 6 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Caforio AL, Mahon NJ, Tona F, McKenna WT. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail. 2002;4(4):411–7. doi:10.1016/S1388-9842(02)00010-7.

    Article  PubMed  Google Scholar 

  2. Figulda HR. Transformation of myocarditis and inflammatory cardiomyopathy to idiopathic dilated cardiomyopathy to idiopathic dilated cardiomyopathy: facts and fiction. Med Microbiol Immunol (Berl). 2004;193:61–4. doi:10.1007/s00430-003-0205-y.

    Article  Google Scholar 

  3. Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunological profile of responders versus nonresponders. Circulation. 2003;107(6):857–63. doi:10.1161/01.CIR.0000048147.15962.31.

    Article  PubMed  Google Scholar 

  4. Smith SC, Allen PM. Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol. 1991;147(2):2141–7.

    PubMed  CAS  Google Scholar 

  5. Kishimoto C, Hiraoka Y, Takamatsu N, Takada H, Kamiya H, Ochiai H. An in vivo model of autoimmune post coxsackievirus B3 myocarditis in severe combined immunodeficiency mouse. Cardiovasc Res. 2003;60(2):397–403. doi:10.1016/j.cardiores.2003.07.002.

    Article  PubMed  CAS  Google Scholar 

  6. Penninger JM, Pummerer C, Lui P, Neu N, Bachmaier K. Cellular and molecular mechanisms of murine myocarditis. APMIS. 1997;105:1–13.

    PubMed  CAS  Google Scholar 

  7. Huber SA. Animal models of human disease. Autoimmunity in myocarditis: relevance of animal models. Clin Immunol Immunopathol. 1997;83(2):93–102. doi:10.1006/clin.1997.4342.

    Article  PubMed  CAS  Google Scholar 

  8. Neu N, Rose NR, Beisel KW, Herskovitz A, Gurri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987;139:3630–6.

    PubMed  CAS  Google Scholar 

  9. Pummerer CL, Luze K, Grassl G, Bachmaier K, Offner F, Burrell SK, et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB\CJ mice. J Clin Invest. 1996;97(9):2057–62. doi:10.1172/JCI118642.

    Article  PubMed  CAS  Google Scholar 

  10. Bachmaier K, Neu N, dela Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science. 1999;283:1335–13339. doi:10.1126/science.283.5406.1335.

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham MW. T regulatory cells: Sentinels against autoimmune heart disease. Circ Res. 2006;99:1024–6. doi:10.1161/01.RES.0000250832.30969.6a.

    Article  PubMed  CAS  Google Scholar 

  12. Faria AMC, Weiner HL. Oral tolerance mechanisms and therapeutic applications. Adv Immunol. 1999;73:153–264. doi:10.1016/S0065-2776(08)60787-7.

    Article  PubMed  CAS  Google Scholar 

  13. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 1998;97:1375–81.

    PubMed  CAS  Google Scholar 

  14. Afanasyeva M, Wang Y, Kaya Z, Stafford EA, Dohmen KM, Sadighi Akha AA, et al. Interleukin-12 receptor/STAT 4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation. 2001;104:3145–51. doi:10.1161/hc5001.100629.

    Article  PubMed  CAS  Google Scholar 

  15. Metcalf D, DiRago L, Mifsud A, Hartley L, Alexander WS. The development of fatal myocarditis and polymyositis in mice heterozygous for INF-γ and lacking the SOCS-1 gene. Proc Natl Acad Sci U S A. 2000;79:9174–9. doi:10.1073/pnas.160255197.

    Article  Google Scholar 

  16. Smith SC, Allen PM. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. Circ Res. 1992;70(4):856–63.

    PubMed  CAS  Google Scholar 

  17. Bachmaier K, Pummerer C, Kozieradzki I, Pfeffer K, Mak TW, Neu N, et al. Low molecular weight tumor necrosis factor receptor p55 controls induction of autoimmune heart disease. Circulation. 1997;95(3):655–61.

    PubMed  CAS  Google Scholar 

  18. Eriksson U, Kurrer MO, Bengasser R, Eugster HP, Saremaslami P, Follath F, et al. Lethal autoimmune myocarditis in INF-γ receptor deficient mice: enhanced disease severity impaired by iNOS induction. Circulation. 2001;103(1):18–21.

    PubMed  CAS  Google Scholar 

  19. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M. Dual role of the IL-12/INF-γ axis in the development of myocarditis: induction of IL-12 and protection by INF-γ. J Immunol. 2001;167:5464–9.

    PubMed  CAS  Google Scholar 

  20. Feuerer M, Eulenburg K, Loddenkemper C, Hamann A, Huehn J. Self-limitation of Th1-mediated inflammation by INF-γ. J Immunol. 2006;176:2857–63.

    PubMed  CAS  Google Scholar 

  21. Valaperti A, Marty RR, Kania G, Germano D, Mauermann N, Dirnhofer S, et al. CD 11b+ monocytes abrogate Th17 CD4 + T cell-mediated experimental autoimmune myocarditis. J Immunol. 2008;180:2686–95.

    PubMed  CAS  Google Scholar 

  22. Rangachari M, Mauermann M, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med. 2006;203:2009–19. doi:10.1084/jem.20052222.

    Article  PubMed  CAS  Google Scholar 

  23. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1069–70. doi:10.1038/ni1261.

    Article  CAS  Google Scholar 

  24. Sonderegger I, Rohn TA, Kurrer MO, Iezzi G, Zou Y, Kastelein RA, et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol. 2006;36:2849–56. doi:10.1002/eji.200636484.

    Article  PubMed  CAS  Google Scholar 

  25. Afanasyeva M, Wang Y, Kaya Z, Park S, Zilliox MJ, Schofield BH, et al. Experimental autoimmune myocarditis in A/J mice is an interleukin-4 dependent disease with a Th2 phenotype. Am J Pathol. 2001;159:193–203.

    PubMed  CAS  Google Scholar 

  26. Cihakova D, Barin JG, Afanasyeva M, Kimura M, Fairweather D, Berg M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172:1195–208. doi:10.2353/ajpath.2008.070207.

    Article  PubMed  CAS  Google Scholar 

  27. Imada K, Leonard WJ. The JAK-STAT pathway. Mol Immunol. 2000;37(1-2):1–11. doi:10.1016/S0161-5890(00)00018-3.

    Article  PubMed  CAS  Google Scholar 

  28. Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, et al. Requirement for STAT 4 in interleukin-12-mediated responses of natural killer and T cells. Nature. 1996;382:171–4. doi:10.1038/382171a0.

    Article  PubMed  CAS  Google Scholar 

  29. Kaplan MH, Sun YL, Hoey T, Grusby MJ. Impaired IL-12 responses and enhanced development of Th2 cells in STAT 4-deficient mice. Nature. 1996;382:171–4. doi:10.1038/382174a0.

    Article  Google Scholar 

  30. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, et al. Essential role of STAT 6 in IL-4 signaling. Nature. 1996;380:627–30. doi:10.1038/380627a0.

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan MH, Schinder U, Smiley ST, Grusby MJ. STAT 6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996;4:313–9. doi:10.1016/S1074-7613(00)80439-2.

    Article  PubMed  CAS  Google Scholar 

  32. Holz A, Bot A, Coon B, Wolfe T, Grusby MJ, von Herrath MG. Disruption of STAT 4 signaling pathway protects from autoimmune diabetes while retaining antiviral immune competence. J Immunol. 1999;163:5374–82.

    PubMed  CAS  Google Scholar 

  33. Chitnis T, Najafian N, Benou C, Salama AD, Grusby M, Sayegh MH, et al. Effect of targeted disruption of STAT 4 and STAT 6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest. 2001;108:739–47.

    PubMed  CAS  Google Scholar 

  34. Frisancho-Kiss S, Nyland JF, Davis SE, Frisancho JA, Barrett MA, Rose NR, et al. Sex differences in coxsackievirus B3-induced myocarditis: IL-12Rbeta 1 signaling and INF-γ increase inflammation in males independent from STAT4. Brain Res. 2006;26(1):139–47. doi:10.1016/j.brainres.2006.08.003.

    Article  CAS  Google Scholar 

  35. Kaplan MH, Wurster AL, Grusby MJ. A signal transducer and activator of transcription (STAT) 4-independent pathway for the development of T helper type 1 cells. J Exp Med. 1998;188:1191–6. doi:10.1084/jem.188.6.1191.

    Article  PubMed  CAS  Google Scholar 

  36. Kaya Z, Dohmen KM, Wang Y, Afanasyeva M, Leuschner F, Rose NR. Cutting edge: a critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J Immunol. 2002;168(4):1552–6.

    PubMed  CAS  Google Scholar 

  37. Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995;155:910–6.

    PubMed  CAS  Google Scholar 

  38. Gonnella PA, Chen Y, Inobe J, Komagata Y, Quartulli M, Weiner HL. In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J Immunol. 1998;160(10):4708–18.

    PubMed  CAS  Google Scholar 

  39. Gonnella PA, Waldner HP, Weiner HL. B cell-deficient mice (µMT) have alterations in the cytokine microenvironment of the gut associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. J Immunol. 2001;166(7):4456–64.

    PubMed  CAS  Google Scholar 

  40. Homann D, Holz A, Bot A, Coon B, Wolfe T, Peterson J, et al. Autoreactive CD4 + T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity. 1999;11:463–72. doi:10.1016/S1074-7613(00)80121-1.

    Article  PubMed  CAS  Google Scholar 

  41. Fairweather D, Frisancho S, Yusung SA, Barrett MA, Davis SE, Steele RA, et al. IL-12 protects against coxsackie B3-induced myocarditis by increasing INF-γ and macrophage and neutrophil populations in the heart. J Immunol. 2005;174:261–9.

    PubMed  CAS  Google Scholar 

  42. Jin D, Takamoto M, Hu T, Taki S, Sugane K. STAT6 signalling is important in CD8 (+) T-cell activation and defence against Toxoplasma gondii infection in the brain. Immunology. 2009; doi:10.1111/j.1365-2567.2008.02935.x.

  43. Kohyama M, Sugahara D, Hosokawa H, Kubo M, Hozumi N. IL-4 mediated development of TGF-beta 1-producing cells from naïve CD4+ T cells through a STAT 6-independent mechanism. Eur J Immunol. 2001;12:3659–66. doi:10.1002/1521-4141(200112) 31:12<3659::AID-IMMU3659>3.0.CO;2-6.

    Article  Google Scholar 

  44. Lee YH, Shin DW, Kasper LH. Sequential analysis of cell differentials and INF-γ production of splenocytes from mice infected with Toxoplasma gondii. Korean J Parasitol. 2000;38(2):85–90.

    Article  PubMed  CAS  Google Scholar 

  45. Gonnella PA, Waldner HP, Del Nido PJ, McGowan FX. Inhibition of experimental autoimmune myocarditis: Peripheral deletion of TcR Vβ 8.1, 8.2+CD4+ T cells in TLR-4 deficient mice. J Autoimmun. 2008;31(2):180–7. doi:10.1016/j.jaut.2008.06.002.

    Article  PubMed  CAS  Google Scholar 

  46. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;241:744–8. doi:10.1038/nature01355.

    Article  CAS  Google Scholar 

  47. Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95–114. doi:10.1016/S0065-2776(08)00604-4.

    Article  PubMed  CAS  Google Scholar 

  48. Wiekowski MT, Leach MW, Evans EW, Sullivan L, Chen SC, Vassileva G, et al. Ubiquitious transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting infertility and premature death. J Immunol. 2001;166:7563–70.

    PubMed  CAS  Google Scholar 

  49. Ha S, Kim D, Baek K, Yun Y, Sung Y. IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J Immunol. 2004;172:525–31.

    PubMed  CAS  Google Scholar 

  50. Powell MB, Michell D, Lederman J, Buckmeier J, Zamvil SS, Graham M, et al. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol. 1990;2:539–44. doi:10.1093/intimm/2.6.539.

    Article  PubMed  CAS  Google Scholar 

  51. Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol. 1998;161:4437–46.

    PubMed  CAS  Google Scholar 

  52. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566–73.

    PubMed  CAS  Google Scholar 

  53. Issazadeh S, Navikas V, Schaub M, Sayegh M, Khoury S. Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol. 1998;161:1104–12.

    PubMed  CAS  Google Scholar 

  54. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4 and prostaglandin E expression in the brain. J Exp Med. 1992;176:1355–64. doi:10.1084/jem.176.5.1355.

    Article  PubMed  CAS  Google Scholar 

  55. Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, et al. IL-12 receptor β1 and toll-like receptor 4 increase IL-1β and IL-18-associated myocarditis and coxsackie virus replication. J Immunol. 2003;170:4731–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant # HL052589 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Gonnella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonnella, P.A., Del Nido, P.J. & McGowan, F.X. Oral Tolerization with Cardiac Myosin Peptide (614–629) Ameliorates Experimental Autoimmune Myocarditis: Role of Stat 6 Genes in BALB/CJ Mice. J Clin Immunol 29, 434–443 (2009). https://doi.org/10.1007/s10875-009-9290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9290-z

Keywords

Navigation