Skip to main content
Log in

Biogenic volatile compound emissions from a temperate forest, China: model simulation

  • ORIGINAL PAPER
  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Emissions of biogenic volatile organic compounds (BVOC) were measured using a relaxed eddy accumulation (REA) technique on an above-canopy tower in a temperate forest (Changbai Mountain, Jilin province, China) during the 2010 and 2011 summer seasons. Solar global radiation and photosynthetically active radiation (PAR) were also measured. Based on PAR energy dynamic balance, an empirical BVOC emission and PAR transfer model was developed that includes the processes of BVOC emissions and PAR transfer above the canopy level, including PAR absorption and consumption, and scattering by gases, liquids, and particles (GLPs). Simulated emissions of isoprene and monoterpenes were in agreement with observations. The averages of the relative estimator biases for the flux were 39.3 % for isoprene, and 27.1 % for monoterpenes in the 2010 and 2011 growing seasons, with NMSE (normalized mean square error) values of 0.133 and 0.101, respectively. The observed and simulated mean diurnal variations of isoprene and monoterpenes in the 2010 and 2011 growing seasons were evaluated for the validation of the empirical model. Under observed atmospheric conditions, the sensitivity analysis showed that emissions of isoprene and monoterpenes were more sensitive to changes in PAR than to water vapor content or to the magnitude of the scattering factor. The emissions of isoprene and monoterpenes in the 2010 and 2011 growing seasons (from June to September) were estimated using this empirical model along with hourly observational data, with mean hourly emissions of 1.71 and 1.55 mg m−2 h−1 for isoprene, and 0.48 and 0.47 mg m−2 h−1 for monoterpenes in 2010 and 2011, respectively. As formaldehyde (HCHO) is considered as the main oxidation product of isoprene and monoterpenes, it is necessary to investigate the link between HCHO and BVOC emissions. GOME-2 HCHO vertical column densities (VCDs) can be used to estimate BVOC emission fluxes in the Changbai Mountain temperate forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arneth, A., Niinemets, U., Pressley, S., Back, J., Hari, P., Karl, T., Noe, S., Prentice, I.C., Serça, D., Hickler, T., Wolf, A., Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos. Chem. Phys. 7, 31–53 (2007). doi:10.5194/acp-7-31-2007

    Article  Google Scholar 

  • Arneth, A., Monson, R.K., Schurgers, G., Niinemets, U., Palmer, P.I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos. Chem. Phys. 8, 4605–4620 (2008)

    Article  Google Scholar 

  • Back, J., Hari, P., Hakola, H., Juurola, E., Kulmala, M.: Dynamics of monoterpene emissions in Pinus sylvestris during early spring. Boreal Environ. Res. 10, 409–424 (2005)

    Google Scholar 

  • Bai, J.H.: UV attenuation in the cloudy atmosphere. J. Atmos. Chem. 62(3), 211–228 (2009). doi:10.1007/s10874-010-9149-y

    Article  Google Scholar 

  • Bai, J.H.: Analysis of ultraviolet radiation in clear skies in Beijing and its affecting factors. Atmos. Environ. 45(38), 6930–6937 (2011)

    Article  Google Scholar 

  • Bai, J.H.: Observations and estimations of PAR and solar visible radiation in North China. J. Atmos. Chem. 69, 231–252 (2012). doi:10.1007/s10874-012-9239-0

    Article  Google Scholar 

  • Bai, J.H.: Photosynthetically active radiation loss in the atmosphere in North China. Atmos. Pollut. Res. 4, 411–419 (2013)

    Article  Google Scholar 

  • Bai, J.H.: Estimation of the isoprene emission from the Inner Mongolia grassland. Atmos. Pollut. Res. 6, 406–414 (2015)

    Article  Google Scholar 

  • Bai, J.H., Baker, B.: Model simulation of isoprene emission flux in a tropical forest plantation of rubber trees. Acta Sci. Circumst. 24(2), 197–203 (2004)

    Google Scholar 

  • Bai, J.H., Guenther, A., Turnipseed, A., Duhl, T.: Seasonal and interannual variations in whole-ecosystem isoprene and monoterpene emissions from a temperate mixed forest in northern China. Atmos. Pollut. Res. 6, 696–707 (2015)

  • Baker, B., Guenther, A., Greenberg, J., Goldstein, A., Fall, R.: Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: field data and model comparison. J. Geophys. Res. 104, 26107–26114 (1999)

    Article  Google Scholar 

  • Bauerle, S., Moortgat, G.K.: Absorption cross-sections of HOCH2OOH vapor between 205 and 360 nm at 298 K. Chem. Phys. Lett. 309(1–2), 43–48 (1999)

    Article  Google Scholar 

  • Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J.L., Torres, L.: Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions application of light and temperature algorithms. Atmos. Environ. 31, 135–144 (1997)

    Article  Google Scholar 

  • Chang, J.C., Hanna, S.R.: Air quality model performance evaluation. Meteorol. Atmos. Phys. 87, 167–196 (2004)

    Article  Google Scholar 

  • Chen, J., Avise, J., Guenther, A., Wiedinmyer, C., Salathe, E., Jackson, R.B., Lamb, B.: Future land use and land cover influences on regional biogenic emissions and air quality in the United States. Atmos. Environ. 43, 5771–5780 (2009)

    Article  Google Scholar 

  • Ciccioli, P., Fabozzi, C., Brancaleoni, E., Cecinato, A., Frattoni, M., Loreto, F., Kesselmeier, J., Schafer, L., Bode, K., Torres, L., Fugit, J.L.: Use of the isoprene algorithm for predicting monoterpene emission from the Mediterranean holm oak Quercus ilex L.: performance and limits of this approach. J. Geophys. Res. 102, 23319–23328 (1997)

    Article  Google Scholar 

  • Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., Maenhaut, W.: Formation of secondary organic aerosols through photooxidation of isoprene. Science 303, 1173–1176 (2004)

    Article  Google Scholar 

  • Collins, W.J., Derwent, R.G., Johnson, C.E., Stevenson, D.S.: The oxidation of organic compounds in the troposphere and their global warming potentials. Clim. Chang. 52(4), 28 (2002)

    Article  Google Scholar 

  • De Smedt, I., Van Roozendael, M., Stavrakou, T., Müller, J.-F., Lerot, C., Theys, N., Valks, P., Hao, N., van der A, R.: Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmos. Meas. Tech. 5, 2933–2949 (2012)

    Article  Google Scholar 

  • Di Carlo, P., Brune, W.H., Martinez, M., Harder, H., Lesher, R., Ren, X.R., Thornberry, T., Carroll, M.A., Young, V., Shepson, P.B., Riemer, D., Apel, E., Campbell, C.: Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 304, 722–725 (2004)

    Article  Google Scholar 

  • Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P., Holzke, C., Köble, R., Seufert, G., Kesselmeier, J.: Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volitile organic compound budget. J. Geophys. Res. 111, D16305 (2006). doi:10.1029/2005JD006751

    Article  Google Scholar 

  • Duhl, T.R., Gochis, D., Guenther, A., Ferrenberg, S.M., Pendall, E.: Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands. Biogeosciences 10, 483–499 (2013). doi:10.5194/bg-10-483-2013

    Article  Google Scholar 

  • Ensberg, J.J., Carreras-Sospedra, M., Dabdub, D.: Impacts of electronically photo-excited NO2 on air pollution in the South Coast Air Basin of California. Atmos. Chem. Phys. 10, 1171–1181 (2010)

    Article  Google Scholar 

  • Evans, R., Tingey, D., Gumpertz, M.: Interspecies variation in terpenoid emissions from Engelmann and Sitka spruce seedlings. For. Sci. 31, 132–142 (1985)

    Google Scholar 

  • Fan, J.W., Zhang, R.Y.: Atmospheric oxidation mechanism of isoprene. Environ. Chem. 1, 140–149 (2004)

    Article  Google Scholar 

  • Fang, C., Monson, R.K., Cowling, E.B.: Isoprene emission, photosynthesis, and growth in sweetgum (Liquidambar styraci flua) seedlings exposed to short- and long-term drying cycles. Tree Physiol. 16, 441–446 (1996)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts, J.N.: Atmospheric Chemistry Fundamentals and Experimental Techniques. Wiley, New York (1986)

    Google Scholar 

  • Geron, C.D., Guenther, A.B..., Pierce, T.E.: An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States. J. Geophys. Res. 99(D6), 12773–12791 (1994)

    Article  Google Scholar 

  • Goldstein, A., Galbally, I.E.: Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 41, 1514–1521 (2007)

    Article  Google Scholar 

  • Goldstein, A.H., McKay, M., Kurpius, M.R., Schade, G.W., Lee, A., Holzinger, R., Rasmussen, R.: Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs, Geophys. Res. Lett. 31(L22106), (2004). doi:10.1029/2004GL021259

  • Graedel, T.E., Bates, T.S., Bouwman, A.F., Cunnold, D., Dignon, J., Fung, I., Jacob, D.J., Lamb, B.K., Logan, J.A., Marland, G., Middleton, P., Pacyna, J.M., Placet, M., Veldt, C.: A compilation of inventories of emissions to the atmosphere. Glob. Biogeochem. Cycles 7, 1–26 (1993)

    Article  Google Scholar 

  • Granier, C., Petron, G., Muller, J.F., Brasseur, G.: The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos. Environ. 34(29–30), 5255–5270 (2000)

    Article  Google Scholar 

  • Greenberg, J.P., Guenther, A., Zimmerman, P.R., Baugh, W., Geron, C., Davis, K., Helmig, D., Klinger, L.F.: Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer. Atmos. Environ. 33, 855–867 (1999a)

    Article  Google Scholar 

  • Greenberg, J.P., Guenther, A.B..., Madronich, S., Baugh, W., Ginoux, P., Druilhet, A., Delmas, R., Delon, C.: Biogenic volatile organic compound emissions in central Africa during the Experiment for the Regional Sources and Sinks of Oxidants (EXPRESSO) biomass burning season. J. Geophys. Res. 104, 30659–30671 (1999b)

    Article  Google Scholar 

  • Greenberg, J., Guenther, A., Harley, P., Otter, L., Veenendaal, E., Hewitt, C., James, A., Owen, S.: Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. J. Geophys. Res. 108, 8466 (2003). doi:10.1029/2002JD002317

    Article  Google Scholar 

  • Griffin, R.J., Cocker III, D.R., Flagan, R.C., Seinfeld, J.H.: Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 104(D3), 3555–3567 (1999)

    Article  Google Scholar 

  • Grote, R., Mayrhofer, S., Fischbach, R.J., Steinbrecher, R., Staudt, M., Schnitzler, J.-P.: Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos. Environ. 40, 152–165 (2006)

    Article  Google Scholar 

  • Guan, D.X., Wu, J.B., Zhao, X.S., Han, S.J., Yu, G.R., Sun, X.M., Jin, C.J.: CO2 fluxes over an old temperate mixed forest in northeastern China. Agric. For. Meteorol. 137, 138–149 (2006a)

    Article  Google Scholar 

  • Guan, D.X., Wu, J.B., Jin, C.J., Han, S.J., Zhang, M., Shi, T.T.: Diurnal and seasonal variation of CO2 Flux Above the Korean Pine and broad - leaved mixed forest in Changbai Mountain. Sci. Silvae Sin. 42(10), 123–128 (2006b)

    Google Scholar 

  • Guenther, A.B..., Hills, A.J.: Eddy covariance measurement of isoprene fluxes. J. Geophys. Res. 103(D11), 13145–13152 (1998)

    Article  Google Scholar 

  • Guenther, A.B..., Monson, R.K., Fall, R.: Isoprene and monoterpene emission rate variability: observations with eucalyptus and Emission Rate Algorithm Development. J. Geophys. Res. 96, 10799–10808 (1991)

    Article  Google Scholar 

  • Guenther, A.B..., Zimmerman, P.R., Harly, P.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. 98, 12609–12617 (1993)

    Article  Google Scholar 

  • Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of natural volatile organic compound emissions. J. Geophys. Res. 100(D5), 8873–8892 (1995)

    Article  Google Scholar 

  • Guenther, A., Baugh, W., Davis, K., Hampton, G., Harly, P., Klinger, L., Vierling, L., Zimmerman, P.: Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J. Geophys. Res. 101, 18555–18567 (1996)

    Article  Google Scholar 

  • Guenther, A., Baugh, B., Brasseur, G., Greenberg, J., Harley, P., Klinger, L., Serca, D., Vierling, L.: Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J. Geophys. Res.-Atmos. 104(D23), 30625–30639 (1999)

    Article  Google Scholar 

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006). doi:10.5194/acp-6-3181-2006

    Article  Google Scholar 

  • Guenther, A.B..., Jiang, X., Heald, C.L., Sakulyanontvittaya, Duhl, T., Emmons, L.K., Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012)

    Article  Google Scholar 

  • Harley, P.C., Litvak, M.E., Sharkey, T.D., Monson, R.K.: Isoprene emission from velvet bean-leaves – interactions among nitrogen availability, growth photon flux-density, and leaf development. Plant Physiol. 105(1), 279–285 (1994)

    Google Scholar 

  • Harley, P., Guenther, A., Zimmerman, P.: Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol. 16, 25–32 (1996)

    Article  Google Scholar 

  • Harley, P., Guenther, A., Zimmerman, P.: Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiol. 17, 705–714 (1997)

    Article  Google Scholar 

  • Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H.: Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26, 189–222 (1997)

    Article  Google Scholar 

  • Holzinger, R., Lee, A., Paw, K.T., Goldstein, U.A.H.: Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos. Chem. Phys. 5, 67–75 (2005). doi:10.5194/acp-5-67-2005

    Article  Google Scholar 

  • Holzinger, R., Lee, A., McKay, M., Goldstein, A.H.: Seasonal variability of monoterpene emission factors for a Ponderosa pine plantation in California. Atmos. Chem. Phys. 6, 1267–1274 (2006)

    Article  Google Scholar 

  • Horowitz, A., Meller, R., Moortgat, G.K.: The UV–VIS absorption cross sections of the α-dicarbonyl compounds pyruvic acid, biacetyl and glyoxal. J. Photochem. Photobiol. A Chem. 146, 19–27 (2001)

    Article  Google Scholar 

  • Houweling, S., Dentener, F., Lelieveld, J.: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10673–10696 (1998)

    Article  Google Scholar 

  • James, D.L., Jennifer, C.Y., Read, K.A., Hamilton, J.F., Hopkins, J.R., Lewis, A.C., Bandy, B.J., Davey, J., Dwards, P.E., Ingham, T., Self, D.E., Smith, S.C., Pilling, M.J., Heard, D.E.: Measurement and calculation of OH reactivity at a United Kingdom coastal site. J. Atmos. Chem. 64, 53–76 (2009)

    Article  Google Scholar 

  • Junkermann, W., Brühl, C., Perner, D., Eckstein, E., Trautmann, T., Früh, B., Dlugi, R., Gori, T., Ruggaber, A., Reuder, J., Zelger, M., Hofzumahaus, A., Kraus, A., Rohrer, F., Brüning, D., Moortgat, G., Horowitz, A., Tadic, J.: Actinic radiation and photolysis processes in the lower troposphere: effect of clouds and aerosols. J. Atmos. Chem. 42, 413–441 (2002)

    Article  Google Scholar 

  • Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053–1123 (2005)

    Article  Google Scholar 

  • Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J.D., Geron, C.: Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation. J. Geophys. Res. 109, D18306 (2004). doi:10.1029/2004JD004738

    Article  Google Scholar 

  • Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., Martin, S.: Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmos. Chem. Phys. 9, 7753–7767 (2009)

    Article  Google Scholar 

  • Kim, S., Karl, T., Helmig, D., Daly, R., Rasmussen, R., Guenther, A.: Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). Atmos. Meas. Tech. 2, 99–112 (2009). doi:10.5194/amt-2-99-2009

    Article  Google Scholar 

  • Kurpius, M.R., Goldstein, A.H.: Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30(7), (2003). doi:10.1029/2002GL016785

  • Lamb, B., Pierce, T., Baldocchi, D., Allwine, E., Dilts, S., Westberg, H., Geron, C., Guenther, A., Klinger, L., Harley, P., Zimmerman, P.: Evaluation of forest canopy models for estimating isoprene emissions. J. Geophys. Res. 101(D17), 22787–22797 (1996). doi:10.1029/96JD00056

    Article  Google Scholar 

  • Lathiere, J., Hauglustaine, D.A., Friend, A.D., Noblet-Ducoudre, N., Viovy, N., Folberth, G.A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos. Chem. Phys. 6, 2129–2146 (2006)

    Article  Google Scholar 

  • Lerdau, M., Keller, M.: Controls on isoprene emission from trees in a subtropical dry forest. Plant. Cell. Environ. 20, 569–578. (1997)

  • Lerdau, M., Guenther, A., Monson, R.: Plant production and emission of volatile organic compounds. Plant-produced hydro carbons influence not only the plant itself but the atmosphere as well. Bioscience 47, 373–383 (1997)

    Article  Google Scholar 

  • Li, S.P., Matthews, J., Sinha, A.: Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 319, 1657–1660 (2008)

    Article  Google Scholar 

  • Lichtenthaler, H., Rohmer, M., Schwender, J.: Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101, 643–652 (1997)

    Article  Google Scholar 

  • Litvak, M.E., Loreto, F., Harley, P.C., Sharkey, T.D., Monson, R.K.: The response of isoprene emission rate and photosyn thetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ. 19, 549–559 (1996)

    Article  Google Scholar 

  • Martin, M.J., Stirling, C.M., Humphries, S.W., Long, S.P.: A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol. Model. 131, 161–174 (2000)

    Article  Google Scholar 

  • Matthews, J., Sinha, A., Francisco, J.S.: The importance of weak absorption features in promoting tropospheric radical production. PNAS 102(21), 7449–7452 (2005)

    Article  Google Scholar 

  • Monson, R., Harley, P., Litvak, M., Wildermuth, M., Guenther, A., Zimmerman, P., Fall, R.: Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99, 260–270 (1994)

    Article  Google Scholar 

  • Monson, R.K., Trahan, N., Rosenstiel, T.N., Veres, P., Moore, D., Wilkinson, M., Norby, R.J., Volder, A., Tjoelker, M.G., Briske, D.D., Karnosky, D.F., Fall, R.: Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Philos. Trans. Roy. Soc. A. 365, 1677–1695 (2007)

    Article  Google Scholar 

  • Naik, V., Delire, C., Wuebbles, D.J.: Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2. J. Geophys. Res. 109, D06301 (2004)

    Article  Google Scholar 

  • Niinemets, U., Tenhunen, J.D., Harley, P.C., Steinbrecher, R.: A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ. 22, 1319–1335 (1999)

    Article  Google Scholar 

  • Niinemets, Ü., Seufert, G., Steinbrecher, R., Tenhunen, J.D.: A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol. 153, 257–275 (2002)

    Article  Google Scholar 

  • Orlando, J.J., Noziere, B., Tyndall, G.S., Orzechowska, G.E., Paulson, S.E., Rudich, Y.: Product studies of the OH- and ozone-initiated oxidation of some monoterpenes. J. Geophys. Res. 105(D9), 11561–11572 (2000)

    Article  Google Scholar 

  • Owen, S., Harley, P., Guenther, A., Hewitt, C.: Light dependency of VOC emissions from selected Mediterranean plants. Atmos. Environ. 36, 3147–3159 (2002)

    Article  Google Scholar 

  • Pacifico, F., Harrison, S.P., Jones, C.D., Sitch, S.: Isoprene emissions and climate. Atmos. Environ. 43, 6121–6135 (2009)

    Article  Google Scholar 

  • Pacifico, F., Harrison, S.P., Jones, C.D., Arneth, A., Sitch, S., Weedon, G.P., Barkley, M.P., Palmer, P.I., Serca, D., Potosnak, M., Fu, T.-M., Goldstein, A., Bai, J., Schurgers, G.: Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmos. Chem. Phys. 11, 4371–4389 (2011)

    Article  Google Scholar 

  • Palmer, P.I., Dorian, S.A., Fu, T.M., Jacob, D.J., Chance, K., Kuruso, T.P., Guenther, A., et al.: Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of formaldehyde column. J. Geophys. Res. 111, D12315 (2006). doi:10.1029/2005JD006689

    Article  Google Scholar 

  • Pegoraro, E., Rey, A., Bobich, E.G., Barron-Gafford, G., Grieve, K.A., Malhi, Y., Murthy, R.: Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. Funct. Plant Biol. 31, 1137–1147 (2004)

    Article  Google Scholar 

  • Petron, G., Harley, P., Greenberg, J., Guenther, A.: Seasonal temperature variations influence isoprene emission. Geophys. Res. Lett. 28(9), 1707–1710 (2001)

    Article  Google Scholar 

  • Pierce, T.E., Waldruff, P.S.: Pc-Beis - a personal-computer version of the biogenic emissions inventory system. J. Air Waste Manage. Assoc. 41(7), 937–941 (1991)

    Article  Google Scholar 

  • Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., Guenther, A.: Influence of increased isoprene emissions on regional ozone modeling. J. Geophys. Res. Atmos. 103(D19), 25611–25629 (1998)

    Article  Google Scholar 

  • Platt, U., Stutz, J.: Differential Optical Absorption Spectroscopy: Principles and Applications (Physics of Earth and Space Environments). Springer, Berlin (2008). ISBN 978–3540211938

    Google Scholar 

  • Poisson, N., Kanakidou, M., Crutzen, P.J.: Impact of nonmethane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modeling results. J. Atmos. Chem. 36, 157–230 (2000)

    Article  Google Scholar 

  • Ruuskanen, T.M., Kolari, P., Bäck, J., Kulmala, M., Rinne, J., Hakola, H., Taipale, R., Raivonen, M., Altimir, N., Hari, P.: On-line field measurements of monoterpene emissions from Scots pine by proton-transfer-reaction mass spectrometry. Boreal Environ. Res. 10, 553–567 (2005)

    Google Scholar 

  • Sanderson, M.G., Jones, C.D., Collins, W.J., Johnson, C.E., Derwent, R.G.: Effect of climate change on isoprene emissions and surface ozone levels. Geophys. Res. Lett. 30(18), 1936 (2003)

    Google Scholar 

  • Schuh, G., Heiden, A.C., Hoffmann, T., Kahl, J., Rockel, P., Rudolph, J., Wildt, J.: Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J. Atmos. Chem. 27, 291–318 (1997)

    Article  Google Scholar 

  • Schurgers, G., Arneth, A., Holzinger, R., Goldstein, A.H.: Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos. Chem. Phys. 9, 3409–3423 (2009)

    Article  Google Scholar 

  • Sharkey, T.D., Loreto, F.: Water stress, temperature, and light effects on the capacity for isoprene emission and photo synthesis of kudzu leaves. Oecologia 95, 328–333 (1993)

    Article  Google Scholar 

  • Sharkey, T.D., Singsaas, E.L., Lerdau, M.T., Geron, C.D.: Weather effects on isoprene emission capacity and application in emission algorithms. Ecol. Appl. 9(4), 1132–1137 (1999)

    Article  Google Scholar 

  • Sharkey, T.D., Singsaas, E.L., Lerdau, M.T., Geron, C.: Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol. Appl. 9, 1132–1137 (2000)

    Article  Google Scholar 

  • Staudt, M., Bertin, N.: Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ. 21, 385–395 (1998)

    Article  Google Scholar 

  • Staudt, M., Seufert, G.: Light-dependent emission of monoterpenes by Holm Oak (Quercus ilex L.). Naturwissenschaften 82, 89–92 (1995)

    Article  Google Scholar 

  • Staudt, M., Bertin, N., Frenzel, B., Seufert, G.: Seasonal variations in amount and composition of monoterpenes emitted by young Pinus Pinea trees: implications for emission modeling. J. Atmos. Chem. 35, 77–99 (2000)

    Article  Google Scholar 

  • Steinbrecher, R.: Isoprene: production by plants and ecosystem-level estimates. In: Helas, G., Slanina, J., Stein Brecher, R. (eds.) Biogenic Volatile Organic Compounds in the Atmosphere, pp. 101–114. SPB Academic Publishing, Amsterdam (1997)

    Google Scholar 

  • Tingey, D.T., Manning, M., Grothaus, L.C., Burns, W.F.: Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol. 65, 797–801 (1980)

    Article  Google Scholar 

  • Tingey, D.T., Evans, R., Gumpertz, M.: Effects of environ mental conditions on isoprene emission from live oak. Planta 152, 565–570 (1981)

    Article  Google Scholar 

  • Velikova, V., Pinelli, P., Pasqualini, S., Reale, L., Ferranti, F., Loreto, F.: Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol. 166(2), 419–426 (2005)

    Article  Google Scholar 

  • Volkamer, R., Spietz, P., Burrows, J., Platt, U.: High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges. J. Photochem. Photobiol. A Chem. 172(1), 35–46 (2005)

    Article  Google Scholar 

  • Wang, Y.F., Owen, S.M., Li, Q.-J., Penuelas, J.: Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control. Glob. Chang. Biol. 13, 2270–2282 (2007). doi:10.1111/ j.1365-2486.2007.01441.x

    Article  Google Scholar 

  • Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Pöschl, U., Williams, J., Hoor, P., Fischer, H., Crutzen, P.J., Scheeren, H.A., Lelieveld, J.: Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinam in March 1998. J. Atmos. Chem. 38, 167–185 (2001)

    Article  Google Scholar 

  • Wright, T.P., Hader, J.D., McMeeking, G.R., Petters, M.D.: High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol. 48, i–v (2014). doi:10.1080/02786826.2014.968244

    Article  Google Scholar 

  • Wu, J.B., Guan, D.X., Zhao, X.S., et al.: CO2 concentration character in broad 1eaved Korean pine forest of Changbai Mountains. Chin. J. Appl. Ecol. 16(1), 49–53 (2005a)

    Google Scholar 

  • Wu, J.B., Guan, D.X., Sun, X.M., Yu, G.R., Zhao, X.S.: Eddy flux corrections for CO2 exchange in broad-leaved Korean pine mixed forest of Changbai Montains. Sci. China Ser. D Earth Sci. 48(Supp I), 106–115 (2005b)

    Google Scholar 

  • Yang, H., Wang, B., Han, J.: Numerical classification of the Korean pine broad-leaved forest at Changbai mountain. In: Research Station of Changbai Mountain Forest Ecosystem, Chinese Academy of Sciences (ed.) Research on Forest Ecosystem, pp. 15–32. Chinese Forestry Press, Beijing (1985). in Chinese

    Google Scholar 

  • Yokouchi, Y., Ambe, Y.: Factors affecting the emission of monoterpenes from Red Pine (Pinus densiflora). Plant Physiol. 75, 1009–1012 (1984)

    Article  Google Scholar 

  • Zimmer, W., Bruggemann, N., Emeis, S., Giersch, C., Lehning, A., Steinbrecher, R., Schnitzler, J.-P.: Process-based modelling of isoprene emission by oak leaves. Plant Cell and Environment 23, 585–595 (2000)

    Article  Google Scholar 

  • Zimmer, W., Steinbrecher, R., Korner, C., Schnitzler, J.-P.: The process-based SIM-BIM model: towards more realistic prediction of isoprene emissions from adult Quercus petrea forest trees. Atmos. Environ. 37(12), 1665–1671 (2003)

    Article  Google Scholar 

  • Zou, C.J., Han, S.J., Zhang, J.H.: Competition relationship among tree species in broad-leaved Korean pine mixed forest and its significance for managing the forest. Chin. J. Ecol. 20(4), 35–38 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for all beneficial comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grant NO. 40975082, 41275137), ESA–MOST China Dragon Cooperation, Dragon 3 project (ID10663), and EU 7 framework programme MarcoPolo (Grant NO. 606953). The National Center for Atmospheric Research is sponsored by the US National Science Foundation. The authors thank all the people for their assistance including S.J. Han, J.H. Zhang, H. Xu, F.Y. Lin, D. Li, G.Z. Song, W. Yan at Research Station of Changbai Mountain Forest Ecology, Chinese Academy of Sciences, H.B. Chen, G.C. Wang, X.W. Wan, Y.M. Wu, J.H. Cen, J.Q. Zhang from the Institute of Atmospheric Physics, Chinese Academy of Sciences. The authors give special thanks to Dr. Alex Guenther and Andrew Turnipseed for their work in our collaboration.

Jianhui Bai has received research grants from the National Natural Science Foundation of China (Grant NO. 40975082, 41275137), ESA–MOST China Dragon Cooperation, Dragon 3 project (ID10663), and EU 7 framework programme MarcoPolo (Grant NO. 606953).

The National Center for Atmospheric Research is sponsored by the US National Science Foundation.

We must include the following sentence to make sure that readers are aware that there are no ethical issues with human or animal subjects:

This article does not contain any studies with human or animal subjects.

Compliance with Ethics Requirements

Conflict of interest

Jianhui Bai declares that he has no conflict of interest.

Tiffany Duhl declares that she has no conflict of interest.

Nan Hao declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Duhl, T. & Hao, N. Biogenic volatile compound emissions from a temperate forest, China: model simulation. J Atmos Chem 73, 29–59 (2016). https://doi.org/10.1007/s10874-015-9315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9315-3

Keywords

Navigation