Skip to main content
Log in

Elastic lidar measurements of summer nocturnal low level jet events over Baltimore, Maryland

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Elastic lidar (532 nm) measurements were carried out by the Atmospheric Lidar Group at the University of Maryland, Baltimore County (UMBC, 39.25° N, 76.70° W) during meteorological conditions that favored the formation of the nocturnal low level jet (NLLJ) over the United States Mid-Atlantic region. The lidar timeseries from three case studies showed the intrusion of the NLLJ air mass into the nocturnal boundary layer (NBL) and the subsequent displacement of aerosols that were used for tracing atmospheric motion. Three distinctive regions were identified in the timeseries: 1) a wedging zone within the residual layer, that was heavily laden with aerosols, at the onset of the NLLJ, 2) a lofted layer of particulates above the “clean” jet core, and 3) a region where the lofted layer collapsed that was conterminous with the diminishing NLLJ below, and characterized by downward mixing analogous to turbulent wake regions. The National Oceanic and Atmospheric Administration’s (NOAA) Rapid Update Cycle (RUC, grid 252) model was used to analyze the horizontal extent and vertical structure of the NLLJ and to compare with observations acquired during these events. A conceptual model is proposed to highlight the role of the NLLJ, during similar weather patterns, in the regional transport of pollutants and their impact on poor air quality episodes in the Mid-Atlantic United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Andreas, E.L., Claffey, K.J., Makshitas, A.P.: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound. Lay. Meteor. 97, 459–480 (2000)

    Article  Google Scholar 

  • Angevine, W.M., Trainer, M., McKeen, S.A., Berkowitz, C.M.: Mesoscale meteorology of the New England coast, Gulf of Maine, and Nova Scotia: overview. J. Geophys. Res. 101, 28893–28902 (1996)

    Article  Google Scholar 

  • Banta, R.M.: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 56, 58–87 (2008)

    Article  Google Scholar 

  • Blackadar, A.K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc. 38, 283–290 (1957)

    Google Scholar 

  • Bonner, W.D.: Climatology of the low level Jet. Mon. Weather Rev. 96, 833–850 (1968)

    Article  Google Scholar 

  • Bösenberg, J., Hoff, R.M.: Plan for the implementation of the GAW Aerosol Lidar Observation Network (GALION). World Meteorological Report #178. WMO, Geneva (2008)

    Google Scholar 

  • Clark, R.D., Philbrick, C.R., Ryan, W.F., Doddridge, B.G., Stehr, J.W.: The effects of local and regional scale circulations on air-pollutants during NARSTO-NEOPS 1999–2001. Preprints, 4th Conf. on Atmospheric Chemistry, Orlando, FL, Amer. Meteor. Soc., paper 7.5 (2001)

  • Clarke, J.F., Ching, J.K.S.: Aircraft observations of regional transport of ozone in the Northeastern United States. Atmos. Environ. 17, 1703–1712 (1983)

    Article  Google Scholar 

  • Comer, J.: M. S. Thesis. University of Maryland, Baltimore County (2003)

  • Corsmeier, U., Kalthoff, N., Kolle, M., Kotzian, M., Fiedler, F.: Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event. Atmos. Environ. 31, 1977–1989 (1997)

    Article  Google Scholar 

  • Cuxart, J.: Nocturnal basin low-level jets: an integrated study. Acta Geophys. 56, 100–113 (2008)

    Article  Google Scholar 

  • Dickerson, R.R., Doddridge, B.G., Kelley, P., Rhoads, K.P.: Large scale pollution of the atmosphere over the remote Atlantic ocean. J. Geophys. Res. 100, 8945–8952 (1995)

    Article  Google Scholar 

  • Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring (2013). http://ready.arl.noaa.gov/HYSPLIT.php, Accessed 18 March 2013

    Google Scholar 

  • Engel-Cox, J., Hoff, R.M., Rogers, R., Dimmick, F., Rush, A.C., Szykman, J.J., Al-Saadi, J., Chu, D.A., Zell, E.R.: Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ. 40, 8056–8067 (2006)

    Article  Google Scholar 

  • Holton, J.R.: The diurnal boundary layer wind oscillation above sloping terrain. Tellus. 19, 199–205 (1967)

    Google Scholar 

  • Jiang, X., Lau, N.-C., Held, I., Ploshay, J.: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532–547 (2007)

    Google Scholar 

  • Lundquist, J.K., Mirocha, J.D.: Interaction of nocturnal low-level jets with urban geometries in joint urban 2003 data. J. Appl. Meteorol. Climatol. 47, 44–58 (2008)

    Article  Google Scholar 

  • Mahrt, L., Sun, J., Blumen, W., Delany, T., Oncley, S.: Nocturnal boundary-layer regimes. Bound. Lay. Meteor. 88, 255–278 (1998)

    Article  Google Scholar 

  • Maryland Department of the Environment. Personal communication (2009)

  • Michelson, S., Seaman, N.L.: Mesoscale meteorological structure of a high ozone episode during the 1995 NARSTO-Northeast study. J. Appl. Meteorol. 39, 384–398 (2000)

    Article  Google Scholar 

  • Mueller, C.K., Carbone, R.E.: Dynamics of a thunderstorm outflow. J. Atmos. Sci. 44, 1879–1898 (1987)

    Article  Google Scholar 

  • NASA/GSFC, MODIS Rapid Response. http://rapidfire.sci.gsfc.nasa.gov (2008) Accessed 19 June 2008

  • NOAA/NWS, Hydromeotereological Prediction Center, http://www.hpc.ncep.noaa.gov (2010) Accessed 7 June 2010

  • Parish, T.R., Oolman, L.D.: On the role of sloping terrain in the forcing of the great plains Low-level jet. J. Atmos. Sci. 67, 2690–2699 (2010)

    Article  Google Scholar 

  • Rabenhorst, S.D.: PhD thesis-field observations and model simulations of low-level flows over the Mid-Atlantic during August 1–5, 2006. University of Maryland, College Park (2012)

    Google Scholar 

  • Redemann, J., Pilewskie, P., Russell, P.B., Livingston, J.M., Howard, S., Schmid, B., Pommier, J., Gore, W., Eilers, J., Wendisch, M.: Airborne measurements of spectral direct aerosol radiative forcing in the intercontinental chemical transport experiment/intercontinental transport and chemical transformation of anthropogenic pollution. J. Geophys. Res. 111, D14210 (2006). doi:10.1029/2005JD006812

    Article  Google Scholar 

  • Russell, P.B., Hobbs, P.V., Stowe, L.L.: Aerosol properties and radiative effects in the United States East Coast haze plume: an overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). J. Geophys. Res. 104, 2213–2222 (1999)

    Article  Google Scholar 

  • Ryan, W.F., Doddridge, B.G., Russell, R.R., Morales, R.M., Hallock, K.A., Paul, T.R., Blumenthal, D.L., Anderson, J.A.: Pollutant transport during a regional O3 episode in the Mid-Atlantic States. J. Air Waste Manage. Assoc. 48, 786–797 (1998)

    Article  Google Scholar 

  • Ryan, W.F.: The low level jet in maryland: profiler observations and preliminary climatology. Report prepared for MDE Air and Radiation Administration. Department of Meteorology, Pennsylvania State University (2004)

  • Stensrud, D.J.: Importance of Low-level jets to climate: a review. J. Clim. 9, 1698–1711 (1996)

    Article  Google Scholar 

  • Stull, R.B.: An introduction to boundary layer meteorology. Kluwer, Boston (1998)

  • Taubman, B.F., Marufu, L., Piety, C.A., Doddridge, B.G., Stehr, J.W., Dickerson, R.R.: Airborne characterization of the chemical, optical, and meteorological properties, and origins of a combined ozone-haze episode over the Eastern United States. J. Atmos. Sci. 61, 1781–1793 (2004)

    Article  Google Scholar 

  • UNECE, The 1979 Geneva Convention on Long-range Transboundary Air Pollution, http://www.unece.org/env/lrtap (2010). Accessed 14 March 2010

  • Vukovitch, F.M.: Regional scale boundary layer ozone variations in the Eastern United States and their association with meteorological variations. Atmos. Environ. 29, 2259–2273 (1995)

    Article  Google Scholar 

  • Whiteman, C.D., Bian, X., Zhong, S.: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern great plains. J. Appl. Meteorol. 36, 1363–1376 (1997)

    Article  Google Scholar 

  • Zhang, J., Rao, S.T.:The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J. Appl. Meteor., 38, 1674–1691 (1999)

    Google Scholar 

  • Zhang, D., Zhang, S., Weaver, S.J.: Low-level jets over the Mid-Atlantic States: warm-season climatology and a case study. J. Appl. Meteorol. Climatol. 45, 194–208 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish gratefully to acknowledge support for this study provided by the Maryland Department of the Environment (Contract U00P7201032), and NOAA-CREST CCNY Foundation CREST Grant (Contract NA11SEC481004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Delgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, R., Rabenhorst, S.D., Demoz, B.B. et al. Elastic lidar measurements of summer nocturnal low level jet events over Baltimore, Maryland. J Atmos Chem 72, 311–333 (2015). https://doi.org/10.1007/s10874-013-9277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-013-9277-2

Keywords

Navigation