Skip to main content
Log in

Numerical study on the eddy–mean flow interaction between a cyclonic eddy and Kuroshio

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

A three-dimensional primitive equations ocean model (POM) is employed to study the momentum and energy balance of a moving cyclonic eddy (CE) during eddy–mean flow interaction. The CE generated by an idealized typhoon forms to the east of the Philippine islands. A momentum balance analysis shows that the dynamics of the CE are generally dominated by the geostrophic current throughout the life cycle of the CE. An energy analysis suggests that the eddy kinetic energy (EKE) and the eddy potential energy (EPE) decay rapidly after generation. The maximum EPE initially appears at the surface of the eddy center and gradually appears in the subsurface layer. The largest baroclinic instability (BCI) initially occurs at the surface. For a CE moving along a trajectory, the conversion from mean potential energy (MPE) to the EPE is positive (negative) in the front (rear) part of the trajectory, and then the eddy transfers its EPE forward along its trajectory by means of the front (rear) part of the eddy obtaining (losing) EPE from (to) the mean flow. During the interaction stage, the northward flowing Kuroshio interacts with the southward flow on the western side of the eddy and the inverse velocity shear between the Kuroshio and the eddy causes the EKE to gradually develop east–west asymmetry. The largest barotropic instability (BTI) is found in the interaction zone. Advection term, pressure work, and friction term play the dominating role in eddy decay in the eddy zone, while BTI only dominates in the interaction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Beckmann A, Böning CW, Brügge B, Stammer D (1994) On the generation and role of eddy variability in the central North Atlantic Ocean. J Geophys Res 99(C10):20381–20391

    Article  Google Scholar 

  • Blumberg AF, Herring HJ (1987) Circulation modeling using orthogonal curvilinear coordinates. In: Nihoul JC, Jamart BM (eds) Three-dimensional models of marine and estuarine dynamics. Elsevier Pub Company, pp 55–88

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional coastal ocean models. American Geophysical Union, Washington DC, pp 1–16

    Chapter  Google Scholar 

  • Böning CW, Budich RG (1992) Eddy dynamics in a primitive equation model: sensitivity to horizontal resolution and friction. J Phys Oceanogr 22(4):361–381

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi:10.1029/2007GL030812

    Article  Google Scholar 

  • Chen GX, Hou YJ, Chu XQ, Qi P (2010) Vertical structure and evolution of the Luzon Warm Eddy. Chin J Oceanol Limnol 28(5):955–961

    Article  Google Scholar 

  • Chen GX, Wang D, Hou YJ (2012) The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont Shelf Res 47:178–185

    Article  Google Scholar 

  • Chern CS, Wang J (2005) Interactions of mesoscale eddy and western boundary current: a reduced-gravity numerical model study. J Oceanogr 61(2):271–282

    Article  Google Scholar 

  • Curchitser EN, Haidvogel DB, Hermann AJ, Dobbins EL, Powell TM, Kaplan A (2005) Multi-scale modeling of the North Pacific Ocean: assessment and analysis of simulated basin-scale variability. J Geophys Res 110:C11021. doi:10.1029/2005JC002902

    Article  Google Scholar 

  • da Silva AM, Young CC, Levitus S (1994) Atlas of Surface Marine Data 1994, vol 1. Algorithms and Procedures, NOAA Atlas NESDIS 6, US Dep of Comm, Washington DC, pp 83

  • Ebuchi N, Hanawa K (2000) Mesoscale eddies observed by TOLEX/ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J Oceanogr 56(1):43–57

    Article  Google Scholar 

  • Ezer T, Mellor GL (2000) Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model. Dyn Atmos Oceans 32:185–208

    Article  Google Scholar 

  • Fu L, Keffer T, Niiler P, Wunsch C (1982) Observations of mesoscale variability in the western North Atlantic: a comparative study. J Mar Res 40:809–848

    Google Scholar 

  • Gan J, Li H, Curchitser EN, Haidvogel DB (2006) Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res 111(C6):C06034. doi:10.1029/2005JC003298

    Article  Google Scholar 

  • Holland GJ (1980) An analytical model of the wind and pressure profiles in hurricane. Mon Weather Rev 108:1212–1218

    Article  Google Scholar 

  • Hwang C, Wu CR, Kao R (2004) TOPEX/Poseidon observations of mesoscale eddies over the subtropical countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J Geophys Res 109:C08013. doi:10.1029/2003JC002026

    Article  Google Scholar 

  • Ivchenko VO, Treguier AM, Best SE (1997) A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model. J Phys Oceanogr 27:5–22

    Article  Google Scholar 

  • Kobashi K, Kawamura H (2001) Variation of sea surface at periods of 65–220 days in the subtropical gyre of the North Pacific. J Geophys Res 106:26817–26831

    Article  Google Scholar 

  • Kuo YC, Chern CS (2011) Numerical study on the interactions between a mesoscale eddy and a western boundary current. J Oceanogr 67(3):263–272

    Article  Google Scholar 

  • Lee IH, Chuang WS, Wang DP (2003) Structure and Propagation of a large cyclonic eddy in the western north Pacific from analysis of XBT and altimetry data and numerical simulation. Terr Atmos Ocean Sci 14(2):183–200

    Google Scholar 

  • Levitus S, Bayer T (1994) World Ocean Atlas, vol. 4. Temperature, NOAA Atlas NESDIS 4, Natl Oceanic and Atmos Admin, Silver Spring, Md

  • Levitus S, Burgett R, Bayer T (1994) World Ocean Atlas, vol. 3. Salinity, NOAA Atlas NESDIS 3, Natl Oceanic and Atmos Admin, Silver Spring, Md

  • Liu Y, Dong C, Guan Y, Chen D, McWilliams J (2012) Eddy analysis in a zonal band in the North Pacific Ocean. Deep Sea Res I 68:54–67

    Article  Google Scholar 

  • Matsuura T (1995) The evolution of frontal-geostrophic vortices in a two-layer Ocean. J Phys Oceanogr 25:2298–2318

    Article  Google Scholar 

  • Mellor GL (2004) User’s guide for a three-dimensional, primitive equation, numerical ocean model. Rep, Program in Atmospheric and Oceanic Science. Princeton University, Princeton

    Google Scholar 

  • Qiu B (1999) Seasonal eddy field modulation of the north Pacific subtropical countercurrent: TOPEX/POSEIDON observations and theory. J Phys Oceanogr 29:2471–2486

    Article  Google Scholar 

  • Roemmich D, Gilson J (2001) Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J Phys Oceanogr 31:675–687

    Article  Google Scholar 

  • Sheremet VA (2001) Hysteresis of a western boundary current leaping across a gap. J Phys Oceanogr 31:1247–1259

    Article  Google Scholar 

  • Sheu WJ, Wu CR, Oey LY (2010) Blocking and westward passage of eddies in the Luzon strait. Deep Sea Res II 57:1783–1791

    Article  Google Scholar 

  • Vandermeirsch FO, Carton XJ, Morel YG (2003) Interaction between an eddy and a zonal jet Part I. One and a half layer model. Dyn Atmos Ocean 36:247–270

    Article  Google Scholar 

  • Wang D, Xu H, Lin J, Hu J (2008) Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J Oceanogr 64(6):925–935

    Article  Google Scholar 

  • Xue HJ, Bane J (1997) A numerical investigation of the Gulf stream and its meanders in response to cold air outbreaks. J Phys Oceanogr 27(12):2606–2629

    Article  Google Scholar 

  • Yang Y, Liu CT, Hu JH, Koga M (1999) Taiwan current (Kuroshio) and impinging eddies. J Oceanogr 55:609–617

    Article  Google Scholar 

  • Yang Y, Liu CT, Lee TN, Johns W, Li H, Koga M (2001) Sea surface slope as an estimator of the Kuroshio volume transport east of Taiwan. Geophys Res Lett 28:2461–2464

    Article  Google Scholar 

  • Yang H, Liu Q, Liu Z, Wang D, Liu X (2002) A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea. J Geophys Res 107(C7):3085. doi:10.1029/2001JC001084

    Article  Google Scholar 

  • Yuan D, Li R (2008) Dynamics of eddy-induced Kuroshio variability in Luzon Strait. J Trop Oceanogr 27:1–9 (in Chinese with English abstract)

    Google Scholar 

  • Yuan D, Han W, Hu D (2006) Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J Geophys Res 111:C11007. doi:10.1029/2005JC003412

    Article  Google Scholar 

  • Yuan D, Han W, Hu D (2007) Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophys Res Lett 34:L13610. doi:10.1029/2007GL029401

    Google Scholar 

  • Zhai XM, Johnson HL, Marshall DP (2010) Significant sink of ocean-eddy energy near western boundaries. Nat Geosci 3:608–612

    Article  Google Scholar 

  • Zhuang W, Xie S, Wang D, Taguchi B, Aiki H, Sasaki H (2010) Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res 115:C04010. doi:10.1029/2009JC005647

    Article  Google Scholar 

  • Zu T, Wang D, Yan C, Belkin I, Zhuang W, Chen J (2013) Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dyn 63(5):519–531

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 41506002, 41276024), National Basic Research Program of China (Grant No. 2011CB403500), the Knowledge Innovation Engineering Frontier Project of Sanya Institute of Deep Sea Science and Engineering (Grant No. SIDSSE-201205), and the Sanya and Chinese Academy of Sciences Cooperation Project (Grant No. 2013YD77).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Xie or Dongxiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, W., Xie, Q., Chen, G. et al. Numerical study on the eddy–mean flow interaction between a cyclonic eddy and Kuroshio. J Oceanogr 72, 727–745 (2016). https://doi.org/10.1007/s10872-016-0366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-016-0366-0

Keywords

Navigation