Skip to main content

Advertisement

Log in

Wave climate variability of Taiwan waters

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Global sea surface wind field data derived from NCEP reanalysis were used in driving a SWAN wave model to reconstruct historical wave records from 1948 to 2008. The reconstructed wave data were compared and verified by the observation of the data buoys of the Central Weather Bureau and the Water Resources Agency, Taiwan, and the National Data Buoy Center/National Oceanic and Atmospheric Administration, United States. Over the past six decades, the wave climate in Taiwan waters has undergone considerable changes. The annual mean significant wave heights have reduced an average of 0.31 cm/year. Winter wave heights have gradually dropped 0.86 cm/year, which are related to the weakening of winter monsoons. Regarding the inter-annual wave climate variation, the influence of El Niño/southern oscillation was substantial; the wave heights increased in La Niña years and decreased in El Niño years. In the past 60 years, extreme wave events have been concentrated in two periods: 1967–1974 and 2000–2008. More severe extreme wave events occurred in the latter compared with the former, and all were induced by typhoons. A clear trend, in which the summer (winter) extreme wave events have increased (decreased) gradually, has been identified. The 1980s was the transition period. After the transition period, the annual occurrence of extreme wave events caused by typhoons exceeded those caused by an intense outbreak of winter cold surges, although the total number of the annual extreme wave events has not changed substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allan JC, Komar PD (2000) Are ocean wave heights increasing in the eastern North Pacific? Eos Trans AGU 47:561–567

    Article  Google Scholar 

  • Allan JC, Komar PD (2001) Wave climate change and coastal erosion in the US Pacific Northwest. In: Proceedings: WAVES2001 conference held September 2–6, 2001 in San Francisco. American Society of Civil Engineer

  • Alves JHGM, Banner ML (2003) Performance of a saturated-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J Phys Oceanogr 33:1274–1298

    Article  Google Scholar 

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26(5):489–511

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. In: Proceedings of 25th Int. Conf. Coastal Engineering, vol 1, Orlando, USA, pp 668–676

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res 104:7649–7666

    Article  Google Scholar 

  • Bromirski PD, Cayan DR, Flick RE (2005) Wave spectral energy variability in the northeast Pacific. J Geophys Res 110:C03005

    Google Scholar 

  • Chawla A, Spindler DM, Tolman HL (2012) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model. doi:10.1016/j.ocemod.2012.07.005

    Google Scholar 

  • Chen W, Graf HF, Huang R (2001) The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv Atmos Sci 17(1):48–60

    Google Scholar 

  • Chiou MD, Winter C, Kao CC (2007) Storm surge hindcast in the north sea. In: The 9th Asian Symposium on Visualization, Hong Kong, June 4–8

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F–F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J Clim 6:1743–1753

    Article  Google Scholar 

  • Dodet G, Bertin X, Taborda R (2010) Wave climate variability in the Noth–East Atlantic Ocean over the last six decades. Ocean Model 31:120–131

    Article  Google Scholar 

  • Easterling DR (2000) Climate extremes observation modeling and impact. Science 289:2068

    Article  Google Scholar 

  • Emanuel KA (2001) The contribution of tropical cyclones to the oceans’ meridional heat transport. J Geophys Res 106:14771–14781

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Flandrin P, Rilling G, Concalves P (2004) Empirical mode decomposition as a filter bank. Signal Proc Lett IEEE 11:112–114

    Article  Google Scholar 

  • Glantz MH (2001) Current of Change: impacts of El Niño and La Niña on climate and society, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gong D-Y, Ho C-H (2002) Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys Res Lett 29:1436

    Article  Google Scholar 

  • Gong DY, Wang SW (1999) Long-term variability of the Siberian high and the possible influence of global warming. Acta Geogr Sin 54(2):125–133 (in Chinese)

    Google Scholar 

  • Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn 58:122–199

    Article  Google Scholar 

  • Graham NE, Diaz HF (2001) Evidence for intensification of north Pacific winter cyclones since 1948. Bull Am Met Soc 82:1869–1893

    Article  Google Scholar 

  • Gulev SK, Grigorieva V (2006) Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. Int J Climatol 19:5667–5685

    Article  Google Scholar 

  • Harrison GP, Wallace AR (2005) Sensitivity of wave energy to climate change. IEEE Trans Energy Convers 20:870–877

    Article  Google Scholar 

  • Hirsch RM, Slack JR (1984) A non-parametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732

    Article  Google Scholar 

  • Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly quality data. Water Resour Res 18(1):107–121

    Article  Google Scholar 

  • Huang NE, Coauthors (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond B 454A:903–995

    Article  Google Scholar 

  • Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev Geophys 46:RG2006. doi:10.1029/2007RG000228

    Article  Google Scholar 

  • Jan Sen, Wang J, Chern C-S, Chao S-Y (2002) Seasonal variation of the circulation in the Taiwan Strait. J Mar Syst 35:249–268

    Article  Google Scholar 

  • Kang LH, Chen W, Wei K (2006) The interdecadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation (in Chinese). Clim Environ Res 11:303–309

    Google Scholar 

  • Kitoh A (1988) Correlation between the surface air temperature over Japan and the global sea surface temperature. J Meteor Soc Jpn 66:967–986

    Google Scholar 

  • Komen GJ, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14:1271–1285

    Article  Google Scholar 

  • Kossin JP, Knapp KR, Vimont DJ, Murnane RJ (2007) A globally consistent reanalysis of hurricane trends. Geophys Res Lett 34:L04815. doi:10.1029/2006GL028836

    Article  Google Scholar 

  • Large WG, Pond S (1981) Open ocean-momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336

    Article  Google Scholar 

  • Lee Y-A (2002) A T-EOF based prediction method. J Clim 15:226–234

    Article  Google Scholar 

  • Lee B-C, Chien H, Cheng H-Y, Chiou M-D (2010) Evaluation of operational wave forecasts for northeastern coast of Taiwan. Terr Atmos Ocean Sci 21(1):195–210. doi:10.3319/TAO.2009.06.03.02

    Article  Google Scholar 

  • Lins HF, Slack JR (1999) Streamflow trends in the United States. Geophys Res Lett 26:227–230

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–1998 El Niño. Science 283:950–954

    Article  Google Scholar 

  • McPhaden MJ, Picaut J (1990) El Niño-Southern oscillation displacements of the western equatorial Pacific warm pool. Science 250:1385–1388

    Article  Google Scholar 

  • Menéndez M, Méndez FJ, Losada IJ, Graham NE (2008) Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys Res Lett 35:L22607. doi:10.1029/2008GL035394

    Article  Google Scholar 

  • Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of extreme wave climate change under global warming. Hydrol Res Lett 4:15–19

    Article  Google Scholar 

  • Nicholls N (2008) Recent trends in the seasonal and temporal behaviour of the El Niño Southern Oscillation. Geophys Res Lett 35:L19703

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate. Integr Nat 421:37–42

    Article  Google Scholar 

  • Ringuet S, Mackenzie FT (2005) Controls of nutrient and phytoplankton dynamics during normal flow and storm runoff conditions, southern Kaneohe Bay, Hawaii. Estuar Coasts 28(3):327–337

    Article  Google Scholar 

  • Ruggiero P, Komar PD, Jonathan CA (2010) Increasing wave heights and extreme value projections: the wave climate of the US Pacific Northwest. Coastal Eng 57(5):539

    Article  Google Scholar 

  • Sasaki W, Hibiya T (2007) Interannual variability and predictability of summertime significant wave heights in the western North Pacific. J Oceanogr 63:203–213

    Article  Google Scholar 

  • Sasaki W, Iwasaki SI, Matsuura T, Lisuka S, Watabe I (2005) Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific. J Geophys Res 110(C09008):13. doi:10.1029/2004JC002730

    Google Scholar 

  • Slott JM, Murray AB, Ashton AD, Crowley TJ (2006) Coastline responses to changing storm patterns. Geophys Res Lett 33:L18404. doi:10.1029/2006GL027445

    Article  Google Scholar 

  • Snyder R, Dobson FW, Elliott JA, Long RB (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J Fluid Mech 102:1–59

    Article  Google Scholar 

  • Sterl A, Komen GJ, Cotton PD (1998) Fifteen years of global wave hindcasts using winds from the European Centre for medium-range weather forecast reanalysis: validating the reanalyzed winds and assessing the wave climate. J Geophys Res 103:5477–5492

    Article  Google Scholar 

  • Swail VR, Cox AT (2000) On the use of NCEP/NCAR reanalysis surface marine wind fields for a long-term North Atlantic wave hindcast. J Atmos Oceanic Technol 17:532–544

    Article  Google Scholar 

  • Vanem Erik, Natvig B, Huseby AB (2012) Modelling the effect of climate change on the wave climate of the World’s oceans. Ocean Sci J 47:123–145

    Article  Google Scholar 

  • Wang XL, Swail VR (2001) Changes of extreme wave heights in north hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221

    Article  Google Scholar 

  • Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35:L20702. doi:10.1029/2008GL035287

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846

    Article  Google Scholar 

  • Woolf DK, PG Challenor, PD Cotton (2002) Variability and predictability of the North Atlantic wave climate. J Geophys Res 107. doi:10.1029/2001JC001124

  • Wu ZH, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Wu L, Wang B, Geng S (2005) Growing typhoon influence on East Asia. Geophys Res Lett 32:L18703. doi:10.1029/2005GL022937

    Article  Google Scholar 

  • Yamaguchi M, Hatada Y (2003) Estimation of wave climate and its long-term variability around the coasts of Korea. In: Proceedings of 13th ISOPE conference, Hawaii

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F–F (2009) El Niño in a changing climate. Nature 461(7263):511–514

    Article  Google Scholar 

  • Zhang Y, Sperber KR, Boyle JS (1997) Climatology and interannual variation of the East Asian winter monsoon: results from the 1979–95 NCEP/NCAR reanalysis. Mon Weather Rev 125:2605–2619

    Article  Google Scholar 

  • Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64:41–58

    Article  Google Scholar 

  • Zhang J, Yan R, Gao RX (2009) Ensemble empirical mode decomposition for machine health diagnosis. Key Eng Mater 413–414:167–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, H., Cheng, HY. & Chiou, MD. Wave climate variability of Taiwan waters. J Oceanogr 70, 133–152 (2014). https://doi.org/10.1007/s10872-014-0218-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-014-0218-8

Keywords

Navigation