Skip to main content
Log in

Metabolic activity of pelagic copepods from 5,000 to 7,000 m depth of the western subarctic Pacific, as inferred from electron transfer system (ETS) activity

  • Short Contribution
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

This study demonstrates reduced electron transfer system (ETS) activity of mixed copepods collected from 5,000 to 7,000 m depths [3.21 ± 1.25 μl O2 (mg protein)−1 h−1 at 10°C] as compared with mixed copepods from 0 to 200 m depths [5.93 ± 1.66 μl O2 (mg protein)−1 h−1 at 10°C] of the western subarctic Pacific. At the in situ temperature of 1.5°C, the 5,000–7,000 m ETS data, in terms of wet mass (WM)-specific respiration rates (R), is equivalent to [0.052 ± 0.021 μl O2 (mg WM)−1 h−1] which is similar to or greater than those reported for selected copepods or mixed mesozooplankton from <5,000 m depth by previous workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aristegui J, Agusti S, Middleburg JJ, Duarte CM (2005) Zooplankton respiration. In: del Geiorgio PA, leB Williams PJ (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 181–205

    Chapter  Google Scholar 

  • Buitenhuis E, Quere CL, Aumont Q, Beaugrand G, Bunker A, Hirst A, Ikeda T, O’Brien T, Pointkovski S, Straile D (2006) Biogeochemical fluxes through mesozooplankton. Global Biogeochem Cycles 20:GB2003. doi:10.1029/2005GB002511

  • Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10:30–36

    Article  Google Scholar 

  • Christensen JP, Packard TT (1979) Respiratory electron transport activities in phytoplankton and bacteria: comparison of methods. Limnol Oceanogr 24:576–583

    Article  Google Scholar 

  • Hernández-León S, Ikeda T (2005) A global assessment of mesozooplankton respiration in the ocean. J Plankton Res 27:153–158

    Article  Google Scholar 

  • Ikeda T (2008) Metabolism in mesopelagic, bathypelagic copepods: reply to Childress et al. (2008). Mar Ecol Prog Ser 373:193–198

    Article  Google Scholar 

  • Ikeda T, Torres JJ, Hernández-León S, Geiger SP (2000) Metabolism. In: Harris RP et al (eds) ICES zooplankton methodology manual. Academic, San Diego, pp 455–532

    Chapter  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2006a) Metabolism of mesopelagic and bathypelagic copepods in the western North Pacific Ocean. Mar Ecol Prog Ser 322:199–211

    Article  Google Scholar 

  • Ikeda T, Yamaguchi A, Matsuishi T (2006b) Chemical composition and energy content of deep-sea calanoid copepods in the western North Pacific Ocean. Deep Sea Res I 53:1791–1809

    Article  Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A (2007a) Respiration in marine pelagic copepods: a global-bathymetric model. Mar Ecol Prog Ser 339:215–219

    Article  Google Scholar 

  • Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2007b) RNA:DNA ratios of calanoid copepods from the epipelagic through abyssopelagic zones of the North Pacific Ocean. Aquat Biol 1:99–108

    Article  Google Scholar 

  • Ivleva IV (1980) The dependence of crustacean respiration rate on body mass and habitat temperature. Int Rev Ges Hydrobiol 65:1–47

    Article  Google Scholar 

  • Kawamura A (1968) Performance of Peterson type closing net. Bull Plankton Soc Jpn 15:11–12

    Google Scholar 

  • Kenner RA, Ahmed SI (1975) Measurements of electron transport activities in marine phytoplankton. Mar Biol 33:119–127

    Article  Google Scholar 

  • King FD, Packard TT (1975a) Respiration and the activity of the respiratory electron transport system in marine zooplankton. Limnol Oceanor 20:849–853

    Article  Google Scholar 

  • King FD, Packard TT (1975b) The effect of hydrostatic pressure on respiratory electron transport system activity in marine zooplankton. Deep Sea Res 22:99–105

    Google Scholar 

  • King FD, Devol AH, Packard TT (1978) Plankton metabolic activity in the eastern tropical North Pacific. Deep Sea Res 25:689–704

    Article  Google Scholar 

  • Kitain VY, Rudyakov YA, Tseitlin VB (1995) Seston and zooplankton of the Bering Sea and the northwestern Pacific. Oceanology 35:66–68

    Google Scholar 

  • Koppelmann R (1994) Distribution and composition of gelatinous detrital material from closing net hauls in the NE Atlantic. Mar Biol 118:755–759

    Article  Google Scholar 

  • Koppelmann R, Schäfer R, Schiebel R (2000) Organic carbon losses measured by heterotrophic activity of mesozooplankton and CaCO3 flux in the bathypelagic zone of the Arabian Sea. Deep Sea Res II 47:169–187

    Article  Google Scholar 

  • Koppelmann R, Weikert H, Halsband-Lenk C, Jennerjahn T (2004) Mesozooplankton community respiration and its relation to particle flux in the oligotophic eastern Mediterranean. Global Biogeochem Cycles 18:GB1039. doi:10.1029/2003GB002121

  • Longhurst AR (1985) The structure and evolution of plankton communities. Prog Oceanogr 15:1–35

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Mauchline J (1972) The biology of bathypelagic organisms, especially Crustacea. Deep Sea Res 19:753–780

    Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Adv Mar Biol 33:1–710

    Article  Google Scholar 

  • Owens TG, King FD (1975) The measurement of respiratory electron-transport system activity in marine zooplankton. Mar Biol 30:27–36

    Article  Google Scholar 

  • Packard TT (1971) The measurement of respiratory electron transport activity in marine phytoplankton. J Mar Res 28:235–244

    Google Scholar 

  • Packard TT, Devol AH, King FD (1975) The effect of temperature on the respiratory electron transport system in marine plankton. Deep Sea Res 22:237–249

    Google Scholar 

  • Packard TT, Gómez M (2008) Exploring a first-principles-based model for zooplankton respiration. ICES J Mar Sci 65:371–378

    Article  Google Scholar 

  • Rudyakov YA, Tseitlin VB (1992) Biomass ratio of seston and zooplankton. Oceanology 32:618–620

    Google Scholar 

  • Smith KL Jr (1982) Zooplankton of a bathyal benthic boundary layer: in situ rates of oxygen consumption and ammonium excretion. Limnol Oceanogr 27:461–471

    Article  Google Scholar 

  • Smith KL Jr (1985) Macrozooplankton of a deep sea hydrothermal vent: in situ rates of oxygen consumption. Limnol Oceanogr 30:102–110

    Article  Google Scholar 

  • Smith KL Jr, Carlucci AF, Williams PM, Henrichs SM, Baldwin RJ, Graven DB (1986) Zooplankton and bacterioplankton of an abyssal benthic boundary layer: in situ rates of metabolism. Oceanol Acta 9:47–55

    Google Scholar 

  • Thuesen EV, Miller CB, Childress JJ (1998) Ecophysiological interpretation of oxygen consumption rates and enzymatic activities of deep-sea copepod. Mar Ecol Prog Ser 168:95–107

    Article  Google Scholar 

  • Vinogradov ME (1962) Feeding of the deep-sea zooplankton. Rapp R-v Réun Cons Perm Int Explor Mer 153:114–120

    Google Scholar 

  • Vinogradov ME (1968) Vertical distribution of oceanic zooplankton. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2004) Latitudinal differences in the planktonic biomass and community structure down to the great depths in the western North Pacific. J Oceanogr 60:773–787

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to T.T. Packard for reviewing earlier drafts of this paper. I thank two anonymous referees for their comments which improved the text. Thanks are extended to A. Yamaguchi for the identification of copepods used in this study. This study was partly supported by grant JSPS KAKENHI 14209001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T. Metabolic activity of pelagic copepods from 5,000 to 7,000 m depth of the western subarctic Pacific, as inferred from electron transfer system (ETS) activity. J Oceanogr 67, 785–790 (2011). https://doi.org/10.1007/s10872-011-0067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-011-0067-7

Keywords

Navigation