Skip to main content
Log in

Crystal and Molecular Structures of Four Salts from Isopropylamine, Cinnamic Acid, 2-Hydroxy-5-(phenyldiazenyl)benzoic Acid, m-Phthalic Acid and 2,6-Pyridinedicarboxylic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Four isopropylamine derived supramolecular salts were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. Compound 1 crystallizes in the monoclinic, space group P2(1), with a = 7.1957(6) Å, b = 6.4365(5) Å, c = 13.3816(11) Å, α = 90°, β = 92.7390(10)°, γ = 90°, V = 619.06(9) Å3, Z = 2. Compound 2 crystallizes in the monoclinic, space group P2(1)/n, with a = 9.2739(8) Å, b = 4.8837(3) Å, c = 35.222(3) Å, α = 90°, β = 92.9800(10)°, γ = 90°, V = 1593.1(2) Å3, Z = 4. Compound 3 crystallizes in the orthorhombic, space group Pnma, with a = 13.1220(11) Å, b = 19.9560(16) Å, c = 6.3290(5) Å, α = 90°, β = 90°, γ = 90°, V = 1657.3(2) Å3, Z = 4. Compound 4 crystallizes in the monoclinic, space group P2(1)/c, with a = 7.0436(5) Å, b = 17.2844(13) Å, c = 13.0970(11) Å, α = 90°, β = 97.2680(10)°, γ = 90°, V = 1581.7(2) Å3, Z = 4. All supramolecular salts bear intermolecular N–H···O hydrogen bonds. Further analysis of the crystal packing of 14 suggests that the CH3–O and CH3–Cπ interactions also have equal importance in the structure extension as the classical hydrogen bonds. In conclusion, the discrete ions can be architectured into 1D–3D structures by the collective non-covalent interactions.

Graphical Abstract

The crystal structures of the salts from isopropylamine, cinnamic acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, m-phthalic acid, and 2,6-pyridinedicarboxylic acid are predominantly stabilized by the classical hydrogen bonds as well as CH3–O, and CH3–Cπ interactions, leading to 1D–3D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  2. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  3. Nishio M (2004) CrystEngComm 6:130

    Article  CAS  Google Scholar 

  4. Claessens CG, Stoddart JF (1997) J Phys Org Chem 10:254

    Article  CAS  Google Scholar 

  5. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210

    Article  CAS  Google Scholar 

  6. Desiraju GR (1995) Angew Chem Int Ed 34:2311

    Article  CAS  Google Scholar 

  7. Whitesides GM, Simanek EE, Mathias JP, Seto CT, Chin D, Mammen M, Gordon DM (1995) Acc Chem Res 28:37 and references therein

    Article  CAS  Google Scholar 

  8. Khurram M, Qureshi N, Smith MD (2006) Chem Commun 2006:5006

    Google Scholar 

  9. Shukla R, Lindeman SV, Rathore R (2007) Chem Commun 36:3717

    Article  Google Scholar 

  10. Wan CQ, Chen XD, Mak TCW (2008) CrystEngComm 10:475

    Article  CAS  Google Scholar 

  11. Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382

    Article  CAS  Google Scholar 

  12. Sada K, Tani T, Shinkai S (2006) Synlett 15:2364

    Article  Google Scholar 

  13. Payer D, Comisso A, Dmitriev A, Strunskus T, Lin N, Woll C, DeVita A, Barth JV, Kern K (2007) Chem Eur J 13:3900

    Article  CAS  Google Scholar 

  14. Schnabel T, Srivastava A, Vrabec J, Hasse H (2007) J Phys Chem B 111:9871

    Article  CAS  Google Scholar 

  15. Tonge NM, MacMahon EC, Pugliesi I, Cockett MC (2007) J Chem Phys 126:154319

    Article  Google Scholar 

  16. Suresh SJ (2007) J Chem Phys 126:204705

    Article  CAS  Google Scholar 

  17. Fisher SZ, Anderson S, Henning R, Moffat K, Langan P, Thiyagarajand P, Schultzd AJ (2007) Acta Crystallogr D 63:1178

    Article  CAS  Google Scholar 

  18. Weber E (1998) Design of organic solids. Topics in current chemistry. Springer, Berlin, p 198

    Book  Google Scholar 

  19. Bhogala BR (2003) Cryst Growth Des 3:547

    Article  CAS  Google Scholar 

  20. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1199

    Article  Google Scholar 

  21. Sarkar M, Biradha K (2006) Cryst Growth Des 6:202

    Article  CAS  Google Scholar 

  22. Ballabh A, Trivedi DR, Dastidar P (2005) Cryst Growth Des 5:1545

    Article  CAS  Google Scholar 

  23. Trivedi DR, Dastidar P (2006) Cryst Growth Des 6:1022

    Article  CAS  Google Scholar 

  24. Aakeröy CB, Beatty AM, Helfrich BA (2001) Angew Chem Int Ed 40:3240

    Article  Google Scholar 

  25. Pedireddi VR, Prakashareddy J (2002) Tetrahedron Lett 43:4927

    Article  CAS  Google Scholar 

  26. Refat MS, Elfalaky A, Elesh E (2011) J Mol Struc 990(1–3):217

    Article  CAS  Google Scholar 

  27. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 47:386

    Article  Google Scholar 

  28. Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ (2008) Cryst Growth Des 8:4533

    Article  CAS  Google Scholar 

  29. Biradha K, Mahata G (2005) Cryst Growth Des 5:61

    Article  CAS  Google Scholar 

  30. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  31. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  32. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  33. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  34. Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978

    Article  CAS  Google Scholar 

  35. Grossel CM, Dwyer AN, Hursthouse MB, Orton JB (2006) CrystEngComm 8:123

    Article  CAS  Google Scholar 

  36. Sasaki T, Ida Y, Hisaki I, Yuge T, Uchida Y, Tohnai N, Miyata M (2014) Chem Eur J 20:2478

    Article  CAS  Google Scholar 

  37. Smith G, Wermuth UD (2010) Acta Cryst E66:o133

    Google Scholar 

  38. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    Article  CAS  Google Scholar 

  39. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937

    CAS  Google Scholar 

  40. Jin SW, Wang DQ (2010) J Chem Crystallogr 40:914

    Article  CAS  Google Scholar 

  41. Blessing RH (1995) Acta Crystallogr A 51:33

    Article  Google Scholar 

  42. Sheldrick GM (1996) SADABS “Siemens Area Detector Absorption Correction”. University of Göttingen, Göttingen

    Google Scholar 

  43. SHELXTL-PC, version 5.03; Siemens Analytical Instruments: Madison, WI

  44. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    Article  CAS  Google Scholar 

  45. Smith G, White JM (2001) Aust J Chem 54:97

    Article  CAS  Google Scholar 

  46. Williams DH, Fleming I (1995) Spectroscopic methods in organic chemistry, 5th edn. McGraw-hill, London

    Google Scholar 

  47. Ali AJ, Athimoolam S, Bahadur SA (2011) Acta Cryst E67:o1376

    Google Scholar 

  48. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555

    Article  CAS  Google Scholar 

  49. Lee T, Wang PY (2010) Cryst Growth Des 10:1419

    Article  CAS  Google Scholar 

  50. Craig GE, Johnson C, Kennedy AR (2012) Acta Cryst E68:o787

    Google Scholar 

  51. Jin SW, Wang DQ (2011) Z Anorg Allg Chem 637:618

    Article  CAS  Google Scholar 

  52. Sundaralingam M, Jensen LH (1965) Acta Crystallogr 18:1053

    Article  CAS  Google Scholar 

  53. Simith G, Hartono AW, Wermuth UD, Healy PC, White JM, Rae AD (2005) Aust J Chem 58:47

    Article  Google Scholar 

  54. Krishnan P, Gayathri K, Sivakumar N, Gunasekaran B, Anbalagan G (2013) Acta Cryst E69:o870

    Google Scholar 

Download references

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Education Office Foundation of Zhejiang Province under Grant No. Y201017321, the National Training Programs of Innovation and Entrepreneurship of China for Undergraduates under Grant No. 201410341022, the Zhejiang A & F University Science Foundation under Grant No. 2009FK63, and the Open Foundation of Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University under Grant No. 2015CUFB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Feng, C., Wen, X. et al. Crystal and Molecular Structures of Four Salts from Isopropylamine, Cinnamic Acid, 2-Hydroxy-5-(phenyldiazenyl)benzoic Acid, m-Phthalic Acid and 2,6-Pyridinedicarboxylic Acid. J Chem Crystallogr 46, 113–123 (2016). https://doi.org/10.1007/s10870-016-0634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0634-2

Keywords

Navigation