Skip to main content
Log in

Interaction among bovine serum albumin (BSA) molecules in the presence of anions: a small-angle neutron scattering study

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Protein–protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA), above and below of its isoelectric point (pI ≈ 4.8), is studied in the presence of anions (Cl, Br, I, F, SO42–) using small-angle neutron scattering (SANS) technique. The SANS study reveals that the short-range attraction among BSA molecules remains nearly unchanged in the presence of anions, whereas the intermediate-range repulsive interaction increases following the Hofmeister series of anions. Although the interaction strength modifies below and above the pI of BSA, it nearly follows the series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Pasquier, C., Vazdar, M., Forsman, J., Jungwirth, P., Lund, M.: Anomalous protein−protein interactions in multivalent salt solution. J. Phys. Chem. B 121, 3000–3006 (2017). https://doi.org/10.1021/acs.jpcb.7b01051

    Article  Google Scholar 

  2. Keskin, O., Gursoy, A., Ma, B., Nussinov, R.: Principles of protein−protein interactions: what are the preferred ways for proteins to interact? Chem. Rev. 108, 1225–1244 (2008). https://doi.org/10.1021/cr040409x

    Article  Google Scholar 

  3. Piazza, R.: Protein interactions and association: an open challenge for colloid science. Curr. Opin. Colloid Interface Sci. 8, 515–522 (2004). https://doi.org/10.1016/j.cocis.2004.01.008

    Article  Google Scholar 

  4. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, USA (2011)

    Google Scholar 

  5. Barbosa, L.R.S., Ortore, M.G., Spinozzi, F., Mariani, P., Bernstorff, S., Itri, R.: The Importance of protein-protein interactions on the ph-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study. Biophys. J . 98, 147–157 (2010). https://doi.org/10.1016/j.bpj.2009.09.056

    Article  Google Scholar 

  6. Bostrom, M., Tavares, F.W., Finet, S., Skouri-panet, F., Tardieu, A., Ninham, B.W.: Why forces between proteins follow different Hofmeister series for pH above and below pI. Biophys. Chem. 117, 217–224 (2005). https://doi.org/10.1016/j.bpc.2005.05.010

    Article  Google Scholar 

  7. Matsarskaia, O., Braun, M.K., Roosen-runge, F., Wolf, M., Zhang, F., Roth, R., Schreiber, F.: Cation-induced hydration effects cause lower critical solution temperature behavior in protein solutions. J. Phys. Chem. B 120, 7731–7736 (2016). https://doi.org/10.1021/acs.jpcb.6b04506

    Article  Google Scholar 

  8. Lonetti, B., Fratini, E., Chen, S.H., Baglioni, P.: Viscoelastic and small angle neutron scattering studies of concentrated protein solutions. Phys. Chem. Chem. Phys. 6, 1388–1395 (2004). https://doi.org/10.1039/b316144g

    Article  Google Scholar 

  9. Zhang, F., Skoda, M.W.A., Jacobs, R.M.J., Martin, R.A., Martin, C.M., Schreiber, F.: Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions. J. Phys. Chem. B 111, 251–259 (2007). https://doi.org/10.1021/jp0649955

    Article  Google Scholar 

  10. Matsarskaia, O., Roosen-runge, F., Schreiber, F.: Multivalent ions and biomolecules: attempting a comprehensive perspective. Chem. Phys. Chem. 21, 1742–1767 (2020). https://doi.org/10.1002/cphc.202000162

    Article  Google Scholar 

  11. Schubert, R., Meyer, A., Baitan, D., Dierks, K., Perbandt, M., Betzel, C.: Real-time observation of protein dense liquid cluster evolution during nucleation in protein crystallization Cryst. Growth Des. 17, 954–958 (2017). https://doi.org/10.1021/acs.cgd.6b01826

    Article  Google Scholar 

  12. Sauter, A., Zhang, F., Szekely, N.K., Pipich, V., Sztucki, M., Schreiber, F.: Structural evolution of metastable protein aggregates in the presence of trivalent salt studied by (V)SANS and SAXS. J. Phys. Chem. B 120, 5564–5571 (2016). https://doi.org/10.1021/acs.jpcb.6b03559

    Article  Google Scholar 

  13. Zhang, F., Weggler, S., Ziller, M.J., Ianeselli, L., Heck, B.S., Hildebrandt, A., Kohlbacher, O., Skoda, M.W.A., Jacobs, R.M.J., Schreiber, F.: Universality of protein reentrant condensation in solution induced by multivalent metal ions. Proteins 78, 3450–3457 (2010). https://doi.org/10.1002/prot.22852

    Article  Google Scholar 

  14. Matsarskaia, O., Vela, S.D., Mariani, A., Fu, Z., Zhang, F., Schreiber, F.: Phase-separation kinetics in protein−salt mixtures with compositionally tuned interactions. J. Phys. Chem. B 123, 1913–1919 (2019). https://doi.org/10.1021/acs.jpcb.8b10725

    Article  Google Scholar 

  15. Nostro, P.L., Ninham, B.W.: Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012). https://doi.org/10.1021/cr200271j

    Article  Google Scholar 

  16. Okur, H.I., Hladílkova, J., Rembert, K.B., Cho, Y., Heyda, J., Dzubiella, J., Cremer, P.S., Jungwirth, P.: Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121, 1997–2014 (2017). https://doi.org/10.1021/acs.jpcb.6b10797

    Article  Google Scholar 

  17. Kunz, W., Henle, J., Ninham, B.W.: ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Colloid Interface Sci. 9, 19–37 (2004). https://doi.org/10.1016/j.cocis.2004.05.005

    Article  Google Scholar 

  18. Kunz, W., Nostro, P.L., Ninham, B.W.: The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 9, 1–18 (2004). https://doi.org/10.1016/j.cocis.2004.05.004

    Article  Google Scholar 

  19. Jordan, J.H., Gibb, C.L.D., Wishard, A., Pham, T., Gibb, B.C.: Ion−hydrocarbon and/or ion−ion interactions: direct and reverse Hofmeister effects in a synthetic host. J. Am. Chem. Soc. 140, 4092–4099 (2018). https://doi.org/10.1021/jacs.8b00196

    Article  Google Scholar 

  20. Zhang, Y., Cremer, P.S.: The inverse and direct Hofmeister series for lysozyme. Proc. Natl. Acad. Sci. USA 106, 15249–15253 (2009). https://doi.org/10.1073/pnas.0907616106

    Article  ADS  Google Scholar 

  21. Tardieu, A., Verge, A.L., Malfois, M., Bonneté, F., Finet, S., Riès-Kautt, M., Belloni, L.: Proteins in solution: from X-ray scattering intensities to interaction potentials. J. Cryst. Growth 196, 193–203 (1999). https://doi.org/10.1016/S0022-0248(98)00828-8

    Article  ADS  Google Scholar 

  22. Lund, M., Jungwirth, P.: Patchy proteins, anions and the Hofmeister series. J. Phys.: Condens. Matter 20, 494218 (2008). https://doi.org/10.1088/0953-8984/20/49/494218

  23. Bostrom, M., Parsons, D.F., Salis, A., Ninham, B.W., Monduzzi, M.: Possible origin of the inverse and direct Hofmeister series for lysozyme at low and high salt concentrations. Langmuir 27, 9504–9511 (2011). https://doi.org/10.1021/la202023r

    Article  Google Scholar 

  24. Newberry, R.W., Raines, R.T.: Secondary forces in protein folding. ACS Chem. Biol. 14, 1677–1686 (2019). https://doi.org/10.1021/acschembio.9b00339

    Article  Google Scholar 

  25. Crocker, J.C., Grier, D.G.: When like charges attract: the effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897–1900 (1996). https://doi.org/10.1103/PhysRevLett.77.1897

    Article  ADS  Google Scholar 

  26. Bostrom, M., Williams, D.R.M., Ninham, B.W.: Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87, 168103 (2001). https://doi.org/10.1103/PhysRevLett.87.168103

    Article  ADS  Google Scholar 

  27. Platten, F., Valadez-Pérez, N.E., Castañeda-Priego, R., Egelhaaf, S.U.: Extended law of corresponding states for protein solutions. J. Chem. Phys. 142, 174905 (2015). https://doi.org/10.1063/1.4919127

    Article  ADS  Google Scholar 

  28. Pellicane, G., Costa, D., Caccamo, C.: Theory and simulation of short-range models of globular protein solutions. J. Phys.: Condens. Matter 16, S4923–S4936 (2004). https://doi.org/10.1088/0953-8984/16/42/010

  29. Chaudhuri, B.N.: Emerging applications of small angle solution scattering in structural biology. Protein Sci. 24, 267–276 (2015). https://doi.org/10.1002/pro.2624

    Article  Google Scholar 

  30. Kundu, S., Pandit, S., Abbas, S., Aswal, V.K., Kohlbrecher, J.: Structures and interactions among globular proteins above the isoelectric point in the presence of divalent ions: a small angle neutron scattering and dynamic light scattering study. Chem. Phys. Lett. 693, 176–182 (2018). https://doi.org/10.1016/j.cplett.2018.01.022

    Article  ADS  Google Scholar 

  31. Svergun, D.I., Koch, M.H.J.: Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66, 1735–1782 (2003). https://doi.org/10.1088/0034-4885/66/10/R05

    Article  ADS  Google Scholar 

  32. Liu, Y., Fratini, E., Baglioni, P., Chen, W., Chen, S.: Effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering. Phys. Rev. Lett. 95, 118102 (2005). https://doi.org/10.1103/PhysRevLett.95.118102

    Article  ADS  Google Scholar 

  33. Pandit, S., Kundu, S., Abbas, S., Aswal, V.K., Kohlbrecher, J.: Structures and interactions among lysozyme proteins below the isoelectric point in presence of divalent ions. Chem. Phys. Lett. 711, 8–14 (2018). https://doi.org/10.1016/j.cplett.2018.09.021

    Article  ADS  Google Scholar 

  34. Kundu, S., Das, K., Aswal, V.K.: Modification of attractive and repulsive interactions among proteins in solution due to the presence of mono-, di- and tri-valent ions. Chem. Phys. Lett. 578, 115–119 (2013). https://doi.org/10.1016/j.cplett.2013.05.062

    Article  ADS  Google Scholar 

  35. Kumar, S., Yadav, I., Ray, D., Abbas, S., Saha, D., Aswal, V.K., Kohlbrecher, J.: Evolution of interactions in the protein solution as induced by mono and multivalent ions. Biomacromol. 20, 2123–2134 (2019). https://doi.org/10.1021/acs.biomac.9b00374

    Article  Google Scholar 

  36. Braun, M.K., Sauter, A., Matsarskaia, O., Wolf, M., Roosen-Runge, F., Sztucki, M., Roth, R., Zhang, F., Schreiber, F.: Reentrant phase behavior in protein solutions induced by multivalent salts: strong effect of anions Cl versus NO3−. J. Phys. Chem. B 122, 11978–11985 (2018). https://doi.org/10.1021/acs.jpcb.8b10268

    Article  Google Scholar 

  37. Moller, J., Grobelny, S., Schulze, J., Steffen, A., Bieder, S., Paulus, M., Tolan, M., Winter. R.: Specific anion effects on the pressure dependence of the protein–protein interaction potential. Phys. Chem. Chem. Phys. 16, 7423–7429 (2014). https://doi.org/10.1039/c3cp55278k

  38. Bowland, E.L., Foegedlng, E.A.: Effects of anions on thermally induced whey protein isolate gels. Food Hydrocolloids 9, 47–56 (1995). https://doi.org/10.1016/S0268-005X(09)80193-8

    Article  Google Scholar 

  39. Aswal, V.K., Goyal, P.S.: Small-angle neutron scattering diffractometer at Dhruva reactor. Curr. Sci. 79, 947–953 (2000)

    Google Scholar 

  40. Hayter, J.B., Penfold, J.: Determination of micelle structure and charge by neutron small-angle scattering. Colloid & Polym. Sci. 261, 1022–1030 (1983). https://doi.org/10.1007/BF01421709

    Article  Google Scholar 

  41. Wu, J., Liu, Y., Chen, W., Cao, J., Chen, S.: Structural arrest transitions in fluids described by two Yukawa potentials. Phys. Rev. E 70, 050401(R) (2004). https://doi.org/10.1103/PhysRevE.70.050401

    Article  ADS  Google Scholar 

  42. Tardieu, A., Finet, S., Bonnete, F.: Structure of the macromolecular solutions that generate crystals. J. Cryst. Growth 232, 1–9 (2001). https://doi.org/10.1016/S0022-0248(01)01053-3

    Article  ADS  Google Scholar 

  43. Verwey, E.J.W., Overbeek, J.T.G.: Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam (1948)

    Google Scholar 

  44. Kline, S.R.: Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Cryst. 39, 895–900 (2006). https://doi.org/10.1107/S0021889806035059

    Article  Google Scholar 

  45. Pedersen, J.S.: Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv. Coll. Interface. Sci. 70, 171–210 (1997). https://doi.org/10.1016/S0001-8686(97)00312-6

    Article  Google Scholar 

  46. Zhang, F., Skoda, M.W.A., Jacobs, R.M.J., Zorn, S., Martin, R.A., Martin, C.M., Clark, G.F., Weggler, S., Hildebrandt, A., Kohlbacher, O., Schreiber, F.: Reentrant condensation of proteins in solution induced by multivalent counterions. Phys. Rev. Lett. 101, 148101 (2008). https://doi.org/10.1103/PhysRevLett.101.148101

    Article  ADS  Google Scholar 

  47. Zhang, F., Roth, R., Wolf, M., Roosen-Runge, F., Skoda, M.W.A., Jacobs, R.M.J., Sztucki, M., Schreiber, F.: Charge-controlled metastable liquid–liquid phase separation in protein solutions as a universal pathway towards crystallization. Soft Matter 8, 1313–1316 (2012). https://doi.org/10.1039/c2sm07008a

    Article  ADS  Google Scholar 

  48. Naseem, B., Arif, I., Jamal, M.A.: Kosmotropic and chaotropic behavior of hydrated ions in aqueous solutions in terms of expansibility and compressibility parameters. Arab. J. Chem. 14, 103405 (2021). https://doi.org/10.1016/j.arabjc.2021.103405

    Article  Google Scholar 

  49. Adebowale, Y.A., Adebowale, K.O.: The influence of kosmotropic and chaotropic salts on the functional properties of Mucuna pruriens protein isolate. Int. J. Biol. Macromol. 40, 119–125 (2007). https://doi.org/10.1016/j.ijbiomac.2006.06.016

    Article  Google Scholar 

Download references

Acknowledgements

SP acknowledges the Department of Science and Technology, Govt. of India, for the financial support through INSPIRE Fellowship (IF 160402). SK acknowledges financial support from the Department of Science and Technology, Govt. of India. Both the authors acknowledge IASST, Guwahati, for the financial and other experimental facilities.

Funding

SP obtained the financial support through INSPIRE Fellowship (Grant no. IF 160402) supported by the Department of Science and Technology, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

SP, SK, and VKA performed all the experiments, analysed the data, and wrote the manuscript. SK and VKA validated and supervised the work. All approved the manuscript.

Corresponding author

Correspondence to Sarathi Kundu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S., Kundu, S. & Aswal, V.K. Interaction among bovine serum albumin (BSA) molecules in the presence of anions: a small-angle neutron scattering study. J Biol Phys 48, 237–251 (2022). https://doi.org/10.1007/s10867-022-09608-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-022-09608-w

Keywords

Navigation