Skip to main content
Log in

Re-entrant cholesteric phase in DNA liquid-crystalline dispersion particles

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this research, we observe and rationalize theoretically the transition from hexagonal to cholesteric packing of double-stranded (ds) DNA in dispersion particles. The samples were obtained by phase exclusion of linear ds DNA molecules from water-salt solutions of poly(ethylene glycol)—PEG—with concentrations ranging from 120 mg ml−1 to 300 mg ml−1. In the range of PEG concentrations from 120 mg ml−1 to 220 mg ml−1 at room temperature, we find ds DNA molecule packing, typical of classical cholesterics. The corresponding parameters for dispersion particles obtained at concentrations greater than 220 mg ml−1 indicate hexagonal packing of the ds DNA molecules. However, slightly counter-intuitively, the cholesteric-like packing reappears upon the heating of dispersions with hexagonal packing of ds DNA molecules. This transition occurs when the PEG concentration is larger than 220 mg ml−1. The obtained new cholesteric structure differs from the classical cholesterics observed in the PEG concentration range 120–220 mg ml−1 (hence, the term ‘re-entrant’). Our conclusions are based on the measurements of circular dichroism spectra, X-ray scattering curves and textures of liquid-crystalline phases. We propose a qualitative (similar to the Lindemann criterion for melting of conventional crystals) explanation of this phenomenon in terms of partial melting of so-called quasinematic layers formed by the DNA molecules. The quasinematic layers change their spatial orientation as a result of the competition between the osmotic pressure of the solvent (favoring dense, unidirectional alignment of ds DNA molecules) and twist Frank orientation energy of adjacent layers (favoring cholesteric-like molecular packing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Robinson, C.: Liquid crystalline structures in polypeptides solutions. Tetrahedron 219–234 (1961). doi:10.1016/S0040-4020(01)92215-X

  2. Luzzati, V., Nicolaieff, A.: The structure of nucleohistones and nucleoprotamines. J. Mol. Biol. 7, 142–163 (1963)

  3. Iizuka, I.: Some new finding in the liquid crystals of sodium salt of deoxyribonucleic acid. Polym. J. 9, 173–180 (1977). doi:10.1295/polymj.9.173

  4. Senechal, E., Maret, G., Dransfel, K.: Long-range order of nucleic acids in aqueous solutions. Int. J. Biol. Macromol. 2, 256–262 (1980). doi:10.1016/0141-8130(80)90085-9

  5. Rill, R.L., Hilliard, P.R., Levy, G.C.: Spontaneous ordering of DNA. J. Biol. Chem. 258, 250–256 (1983)

  6. Rill, R.L.: Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA. Proc. Natl. Acad. Sci. U. S. A. 83, 342–346 (1986)

  7. Strzelecka, T.E., Rill, R.L.: Solid-state 31P NMR studies of DNA liquid crystalline phases. The isotropic to cholesteric transition. J. Am. Chem. Soc. 109, 4513–4518 (1987). doi:10.1021/ja00249a014

  8. Rau, D.C., Lee, B., Parsegian, V.A.: Measurement of the repulsive force between poly-electrolyte molecules in ionic solution-hydration forces between parallel DNA double helices. Proc. Natl. Acad. Sci. U. S. A. 81, 2621–2625 (1984)

  9. Rau, D.C., Parsegian, V.A.: Direct measurement of the intermolecular forces between counterion- condensed DNA double helices: evidence for long range attractive hydration forces. Biophys. J. 61, 246–259 (1992). doi:10.1016/S0006-3495(92)81831-3

  10. Todd, B.A., Parsegian, V.A., Shirahata, A., Thomas, T.J., Rau, D.C.: Attractive forces between cation 710condensed DNA double helices. Biophys. J. 94, 4775–4782 (2008). doi:10.1529/biophysj.107.127332

  11. Livolant, F.: Cholesteric liquid crystalline phases given by three helical biological polymers: DNA, PBLG and xantan. A comparative analysis of their textures. J. Phys. (France) 47(9), 1605–1616 (1986). doi:10.1051/jphys:019860047090160500

  12. Livolant, F., Levelut, A.M., Doucet, J., Benoit, J.P.: The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature 339, 724–726 (1989). doi:10.1038/339724a02739717

  13. Rill, R.L., Strzelecka, T.E., Davidson, M.W., van Winkle, D.H.: Ordered phases in concentrated DNA solutions. Phys. A. 176, 87–116 (1991). doi:10.1016/0378-4371(91)90435-F

  14. Kassapidou, K., Jesse, W., van Dijk, J.F., van der Maarel, J.R.: Liquid crystal formation in DNA fragment solutions. Biopolymers 46(1), 31–37 (1998). doi:10.1002/(SICI)1097-0282(199807)46:1<31::AID-BIP3>3.0.CO;2-Z

  15. Livolant, F.: Supramolecular organization of double-stranded DNA molecules in the columnar hexagonal liquid crystalline phase. An electron microscopic analysis using freeze-fracture methods. J. Mol. Biol. 218, 165–181 (1991)

  16. Leforestier, A., Livolant, F.: Cholesteric liquid crystalline DNA; a comparative analysis of cryofixation methods. Biol. Cell 71, 115–122 (1991). doi:10.1016/0248-4900(91)90058-U

  17. Durand, D., Doucet, J., Livolant, F.: A study of the structure of highly concentrated phases of DNA by X-ray diffraction. J. Phys. II France 2, 1769–1783 (1992)

  18. Leforestier, A., Livolant, F.: Supramolecular ordering of DNA in the cholesteric liquid crystalline phase: an ultrastructural study. Biophys. J. 65, 56–72 (1993). doi:10.1016/S0006-3495(93)81063-4

  19. Livolant, F., Leforestier, A.: Condensed phases of DNA: structures and phase transitions. Prog. Polym. Sci. 21(6), 1115–1164 (1996). doi:10.1016/S0079-6700(96)00016-0

  20. Yu, Y.: M. Skuridin, S.G., Lortkipanidze, G.B, Liquid-crystalline dispersions of nucleic acids. Liq. Cryst. 12, 1–16 (1992). doi:10.1080/02678299208029034

  21. Yevdokimov, Yu, M., Salyanov, V.I., Semenov, S.V., Skuridin, S.G.: DNA Liquid-Crystalline Dispersions and Nanoconstructions. CRC Press (Taylor & Francis Group), Boca Raton 304 (2011)

  22. Adamczyk, A.: Phase transition in freely suspended smectic droplets. Cotton-Mouton technique, architec-ture of droplets and formation nematoids. Mol. Cryst. Liq. Cryst. 170, 53–69 (1989). doi:10.1080/00268948908047747

  23. Chiccoli, C., Pasini, P., Semeria, F., Zannoni, C.: Computer simulations of nematic droplets with toroidal boundary conditions. Mol. Cryst. Liq. Cryst. 221, 19–28 (1992). doi:10.1080/10587259208037516

  24. Yu, Y.: M. Salyanov, V.I., Skuridin, S.G., Semenov, C.V., Kompanets, O.N, The CD Spectra of Double-Stranded DNA Liquid Crystalline Dispersions. Nova, New York, p 103 (2011)

  25. Semenov, S.V., Yevdokimov, Yu, M.: Circular dichroism of DNA liquid-crystalline dispersion particles. Biofizika 60, 242–252 (2015). (article in Russian)

  26. Keller, D., Bustamante, C.: Theory of the interaction of light with large inhomogeneous molecular aggregates. I. Absorption. J. Chem. Phys. 84, 2961 (1986). doi:10.1063/1.450278

  27. Keller, D., Bustamante, C.: Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 84, 2972 (1986). doi:10.1063/1.450278

  28. Mogilevsky, Yu, L., Dembo, A.T., Svergun, D.I., Feigin, L.A.: Small-angle X-ray difractometer with one-dimensional position-sensitive detector. Kristallogr. 29, 587–591 (1984). (article in Russian)

  29. Feigin, L.A., Svergun, D.I.: Structure analysis by Small-Angle X-Ray and Neutron Scattering. Plenum Press, New York 335 (1987)

  30. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I.: PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Appl. Cryst. 36, 1277–1282 (2003). doi:10.1107/S0021889803012779

  31. Shtykova, E.V., Volkov, V.V., Salyanov, V.I., Yevdokimov, Yu, M.: SAXS-data-based structural modeling of DNA-gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions. Eur. Biophys. J. 39, 1313–1322 (2010).

  32. Sonin, A.S.: Introduction to the Physics of Liquid Crystals. Nauka, Moscow, pp 320 (1983) (book in Russian)

  33. Yu, Y.: M. Skuridin, S.G., Salyanov, V.I, The liquid-crystalline phases of double-stranded nucleic acids in vitro and in vivo. Liq. Cryst. 3, 1443–1459 (1988). doi:10.1080/02678298808086687

  34. Sundaresan, N., Thomas, T., Thomas, T.J., Pillai, C.K.S.: Lithium ion induced stabilization of liquid crystalline DNA. Macromol. Biosci. 6, 250 (2006). doi:10.1002/mabi.200500145760

  35. Yevdokimov, Y.M., Skuridin, S.G., Salyanov, V.I., Bykov, V.A., Palumbo, M.: Structural DNA nanothechnology: liquid-crystalline approach. In: Singh, V. (ed.) Biotechnology v. 4, Applied Synthetic Biology, pp. 327–380. Studium Press LLC, Houston (2014)

    Google Scholar 

  36. Yevdokimov, Y.M., Salyanov, V.I., Skuridin, S.G., Semenov, S.V., Kompanets, O.N.: The CD spectra of double-stranded DNA liquid-crystalline dispersions. In: Rodgers, D.S. (ed.) Circular Dichroism: Theory and Spectroscopy, pp. 11–66. Nova, New York (2012)

    Google Scholar 

  37. Dyment, O.N., Kazanskii, K.S., Miroshnikov, A.M.: Glycols and Other Derivatives of Ethylene and Propylene Oxides. Moscow, Khimiya, pp 376 (1976) (book in Russian)

  38. Skuridin, S.G., Damaschun, H., Damaschun, G., Yevdokimov, Y.M., Misselwitz, R.: Polymer condensed DNA: study by small-angle X-ray scattering, intermediate-angle X-ray scattering, and circular dichroism spectroscopy. Stud. Biophys. 112, 139–150 (1986)

  39. Lis, J.T., Schleif, R.R.: Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Res. 2, 383–390 (1975). doi:10.1093/nar/2.3.383

  40. Bloomfield, V., Crothers, D.M., Tinoko, I.: Physical Chemistry of Nucleic Acids. Harper & Row Publishers, p 517 New York (1974)

  41. Podgornik, R., Strey, H.H., Rau, D.C., Parsegian, V.A.: Watching molecules crowd: DNA double helices under osmotic stress. Biophys. Chem. 57, 111–121 (1995). doi:10.1016/0301-4622(5)00058-6

  42. Livolant, F., Maestre, M.F.: Circular dichroism microscopy of compact forms of DNA and chromatin in vivo and in vitro: cholesteric liquid-crystalline phases of DNA and single dinoflagellate nuclei. Biochemistry 27, 3056–3068 (1988). doi:10.1021/bi00408a058

  43. Evdokimov, Yu,M., Pyatigorskaya, T.L., Belozerskaya, N.A., Varshavsky, Ya, M., Becker, M., Zirver, D.:DNA compact form in solution. XI. Melting of the DNA compact state, formed in water-salt solutions, containing poly(ethylene glycol). Mol. Biol. 11, 507–515 (1977). article in Russian

  44. Burlyn, E.M., Kaufman, M.R.: The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51, 914–916 (1973). doi:10.1104/pp.51.5.914

  45. Burlyn, E.M.: Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72, 66–70 (1983). doi:10.1104/pp.72.1.66

  46. Salyanov, V.I., Pogrebnyak, V.G., Skuridin, S.G., Lortkipanidze, G.B., Chidzhavadze, Z.G., Toryanik, A.I., Yevdokimov, Yu, M.: On the relation between the molecular organization of the solution of poly(ethylene glycol)- water and the compactization of thedouble-stranded DNA molecules. Mol. Biol. 12, 367–375 (1978). (article in Russian)

  47. Grasso, D., Gabriele-Campisi, R.: A DSC study of the liquid crystalline phase of salmon sperm DNA. Liq. Cryst. 15, 701–708 (1993). doi:10.1080/02678299308036488

  48. Grasso, D., Fasone, S., La Rosa, C., Salyanov, V.: A calorimetric study of the different thermal behaviour of DNA in the isotropic and liquid-crystalline states. Liq. Cryst. 9, 299–305 (1991). doi:10.1080/02678299108035507

  49. Grasso, D., Gabriele-Campisi, R., La Rosa, C.: Microcalorimetric measurements of thermal denaturation and renaturation processes of salmon sperm DNA in gel and liquid crystalline phases. Thermochim. Acta 199, 239–245 (1992). doi:10.1016/0040-6031(92)80268-2

  50. de Vries, H.: Rotary power and other optical properties of certain liquid crystals. Acta Cryst. 4, 219–226 (1951). doi:10.1107/S0365110X51000751

  51. Saeva, F.D., Sharpe, P.E., Olin, G.R.: Cholesteric liquid crystal induced circular dichroism (LCICD). V. Mechanistic aspects of LCICD. J. Am. Chem. Soc. 95, 7656–7659 (1973). doi:10.1021/ja00804a019

  52. Tinoko, I., Bustamante, C., Maestre, M.F.: The optical activity of nucleic acids and their aggregates. Annu. Rev. Biophys. Bioeng. 9, 107–141 (1980). doi:10.1146/annurev.bb.09.060180.000543

  53. Sackmann, E., Voss, J.: Circular dichroism of helically arranged molecules in cholesteric phases. Chem. Phys. Lett. 14, 528–532 (1972). doi:10.1016/0009-2614(72)80256-2

  54. Norden, B.: Applications of linear dichroism spectroscopy. Appl. Spectrosc. Rev. 14, 157–248 (1978). doi:10.1080/05704927808060393

  55. Belyakov, V.A., Orlov, V.P., Semenov, S.V., Skuridin, S.G., Yevdokimov, Yu, M.: Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds. Liq. Cryst. 20, 777–784 (1996). doi:10.1080/02678299608033172

  56. Goldar, A., Thomson, H., Seddon, J.M.: Structure of DNA cholesteric spherulitic droplet dispersions. J. Phys. Condens. Matter 20(3), pp 9 (2008). doi:10.1088/0953-8984/20/03/035102

  57. Zipper, H., Brunner, H., Bernhagen, J., Vitzthum, F.: Investigation on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implication. Nucleic Acids Res. 32, e103 (2004). doi:10.1093/nar/gnh101

  58. Yu, G.: A., Erukhimovich, Ya, I. Shakhnovich, E.I, On the theory of ψ-condensation. Biopolymers 21, 2413–2432 (1982). doi:10.1002/bip.360211207

  59. Mariani, P., Saturni, L.: Measurement of intercolumnar forces between parallel guanosine four-stranded helices. Biophys. J. 70, 2867–2874 (1996). doi:10.1016/S0006-3495(96)79856-9

  60. Strey, H.H., Parsegian, V.A., Podgornik, R.: Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Phys. Rev. Lett. 78, 895 (1997). doi:10.1103/PhysRevLett.78.895

  61. Leonard, M., Hong, H., Easwar, N., Strey, H.H.: Soft matter under osmotic stress. Polymer 42, 5823–5827 (2001). doi:10.1016/S0032-3861(0)00903-4

  62. Ubbink, J., Odijk, T.: Polymer-induced and salt-induced toroids of hexagonal DNA. Biophys. J. 68, 54–61 (1995). doi:10.1016/S0006-3495(95)80158-X

  63. Stanley, C.B., Hong, H., Strey, H.H.: DNA cholesteric pitch as a function of density and ionic strength. Biophys. J. 89, 2552–2557 (2005). doi:10.1529/biophysj.105.064550

  64. Papkov, S.P., Kulichikhin, V.G.: The Liquid Crystalline State of Polymers. Moscow, Khimiya, pp 240 (1977) (book in Russian)

  65. Gautier, A., Michel-Salamin, L., Tosi-Couture, E., McDowall, A.W., Dubochet, J.: Electron microscopy of the chromosomes of dinoflagellates in situ: confirmation of Bouligand’s liquid crystal hypothesis. J. Ultrastruct. Mol. Struct. Res. 97, 10–30 (1986). doi:10.1016/S0889-1605(86)80003-9

  66. Chandrasekhar, S.: Liquid Crystals, 1st edn. University Press, pp 266 Cambridge (1977)

  67. Livolant, F.: Ordered phases of DNA in vivo and in vitro. Phys. A. 176, 117–137 (1991). doi:10.1016/0378-4371(91)90436-G

  68. Rill, R.L., Livolant, F., Aldrich, H.C., Davidson, M.W.: Electron microscopy of liquid crystalline DNA:direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98, 280–286 (1989)

  69. Bouligand, Y., Norris, V.: Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83, 187–192 (2001). doi:10.1016/S0300-9084(00)01211-6

  70. Sartori, B.N., Senn, A., Leforestier, A., Livolant, F., Dubochet, J.: DNA in human and stallion spermatozoa forms local hexagonal packing with twist and many defects. J. Struct. Biol. 134, 76–81 (2001). doi:10.1006/jsbi.2001.4365

  71. Chow, M.H., Yan, K.T.H., Bennett, M.J., Wong, J.T.Y.: Birefringence and DNA condensation of liquid crystalline chromosomes. Eukaryot. Cell 9(10), 1577–1587 (2010). doi:10.1128/EC.00026-10

  72. de Haller, G., Kellenberger, E., Rouiller, G.: Etude au microscope electronique des plasmas contenant de l’acide deoxyribonucleique. III. Variations ultrastrucrales des chromosomes d’Amphidinium. J. Microsc. (Paris) 3(627–642) (1964)

  73. Harris, A.R., Kamien, R.D., Lubensky, T.C.: Molecular chirality and chiral parameters. Rev. Mod. Phys. 71, 1745 (1999). doi:10.1103/RevModPhys.71.1745

  74. Kornyshev, A.A., Leikin, S., Malinin, S.V.: Chiral electrostatic interaction and cholesteric liquid crystals of DNA. Eur. Phys. J. 7, 83–93 (2002). doi:10.1140/epje/i200101159

  75. Cherstvy, A.G.: DNA cholesteric phases: the role of DNA molecular chirality and DNA-DNA electrostatic interactions. J. Phys. Chem. B. 112, 12585–12595 (2008). doi:10.1021/jp801220p

  76. Bellini, T., Cerbino, R., Zanchetta, G.: DNA-based soft phases. Top. Curr. Chem. 318, 225–279 (2012). doi:10.1007/128_2011_230

  77. Yasar, S., Podgornik, R., Valle-Orero, J., Johnson, M.R., Parsegian, V.A.: Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions. Sci. Rep. 4, 6877 (2014). doi:10.1038/srep06877

  78. Podgornik, R., Strey, H.H., Gawrisch, K., Rau, D.C., Rupprecht, A., Parsegian, V.A.: Bond orientational order, molecular motion, and free energy of high-density DNA mesophases. Proc. Natl. Acad. Sci. U. S. A. 93, 4261–4266 (1996). doi:10.1073/pnas.98.1.31

  79. Odijk, T.: Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophys. Chem. 73, 23–29 (1998). doi:10.1016/S0301-4622(98)00115-X

  80. Lindemann, F.A.: Über die berechnung molekularer eigenfrequenzen. Phys. Z. 14, 609–612 (1910)

  81. Livolant, F., Bouligand, Y.: Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xantan). Columnar textures. J. Phys. (France) 47(10), 1813–1827 (1986). doi:10.1051/jphys:0198600470100181300

  82. Kondepudi, D.K., Asakura, K.: Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001). doi:10.1021/ar010089t

Download references

Acknowledgements

The support from the Russian Science Foundation (project no. 16-15-00041) is gratefully acknowledged.

E.I. Kats's participation in the theoretical interpretation of the results was supported by the Russian Science Foundation (project no. 14-12-00475).

Our special thanks to Georgy S. Peters and Andrey Yu. Gruzinov for excellent support in the SAXS experiments at the DICSI station of the Kurchatov Synchrotron Radiation Source and Vladimir V. Volkov for support in the SAXS experiments on an AMUR-K laboratory diffractometer (Shubnikov Institute of Crystallography of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri M. Yevdokimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yevdokimov, Y.M., Skuridin, S.G., Semenov, S.V. et al. Re-entrant cholesteric phase in DNA liquid-crystalline dispersion particles. J Biol Phys 43, 45–68 (2017). https://doi.org/10.1007/s10867-016-9433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9433-4

Keywords

Navigation