Skip to main content
Log in

Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar–Parisi–Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched-KPZ equation. Seemingly, these results show a possible way of linking the cellular Potts models and the 2D colony front roughness dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Eming, S.A., Martin, P., Tomic-Canic, M.: Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6, 265sr6 (2014)

    Article  Google Scholar 

  2. Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D.L., Weaver, V.M.: Matrix crosslinking forces. Tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009)

    Article  Google Scholar 

  3. Barabasi, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1993)

  4. Brú, A., Pastor, J.M., Fernud, I., Brú, I., Melle, S., Berenguer, C.: Super-rough dynamics on tumor growth. Phys Rev Lett 81, 4008–4011 (1998)

    Article  ADS  Google Scholar 

  5. Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., Brú, I.: The universal dynamics of tumor growth. Biophys J 85, 2948–2961 (2003)

    Article  Google Scholar 

  6. Block, M., Schöll, E., Drasdo, D.: Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys Rev Lett 99, 248101 (2007)

    Article  ADS  Google Scholar 

  7. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., Arvia, A.J., González, P.H.: Morphology and dynamic scaling analysis of cell colonies with linear growth fronts. Phys Rev E 82, 031903 (2010)

    Article  ADS  Google Scholar 

  8. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Morphology and dynamic and morphology characteristics of cell colonies with radially spreading growth fronts. Phys Rev E 84, 021917 (2011)

    Article  ADS  Google Scholar 

  9. Huergo, M.A.C., Pasquale, M.A., Bolzán, A.E., González, P.H., Arvia, A.J.: Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys Rev E 85, 011918 (2012)

    Article  ADS  Google Scholar 

  10. Moglia, B., Guisoni, N., Albano, E.V.: Interfacial properties in a discrete model for tumor growth. Phys Rev E 87, 032713 (2013)

    Article  ADS  Google Scholar 

  11. Galeano, J., Buceta, J., Juarez, K., Pumariño, B., de la Torre, J., Iriondo, J.M.: Dynamical scaling analysis of plant callus growth. Europhys Lett 63, 83–89 (2003)

    Article  ADS  Google Scholar 

  12. Bonachela, J.A., Nadell, C.D., Xavier, J.B., Levin, S.A.: Universality in bacterial colonies. J Stat Phys 144, 303–315 (2011)

    Article  ADS  MATH  Google Scholar 

  13. Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998)

  14. Ahlers, M., Müller, W., Reichert, A., Ringsdorf, H., Venzmer, J.: Specific interactions of proteins with functional lipid monolayers—ways of simulating biomembrane processes. Angew Chem Int Ed Engl 29, 1269–1285 (1990)

    Article  Google Scholar 

  15. Takeuchi, K.A.: Experimental approaches to universal out-of-equilibrium scaling laws: turbulent liquid crystal and other developments. J Stat Mech (2014). doi:10.1088/1742-5468/2014/01/P01006

  16. Huergo, M.A.C., Muzzio, N.E., Pasquale, M.A., González, P.H., Bolzán, A.E., Arvia, A.J.: Dynamic scaling analysis of two-dimensional cell colony fronts in a gel medium: a biological system approaching a quenched Kardar–Parisi–Zhang universality. Phys Rev E 90, 022706 (2014)

    Article  ADS  Google Scholar 

  17. Muzzio, N.E., Pasquale, M.A., González, P.H., Arvia, A.J.: Influence of individual cell motility on the 2D front roughness dynamics of tumour cell colonies. J Biol Phys 40, 285–308 (2014)

    Article  Google Scholar 

  18. Dan, D., Mueller, C., Chen, K., Glazier, J.A.: Solving the advection-diffusion equations in biological contexts using the cellular Potts model. Phys Rev E 72, 041909 (2005)

    Article  ADS  Google Scholar 

  19. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47, 2128–2154 (1993)

    Article  ADS  Google Scholar 

  20. Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys Rev E 78, 061904 (2008)

    Article  ADS  Google Scholar 

  21. Turner, S., Sherrat, J.A., Painter, K.J., Saville, N.J.: From a discrete to a continuous model of biological cell movement. Phys Rev E 69, 021910 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cickovski, T., Huang, C., Chaturvedi, R., Glimm, T., Hentschel, H.G.E., Alber, M., Glazier, J.A., Newman, S.A., Izaguirre, J.A.: A framework for three-dimensional simulation of morphogenesis. ACM Trans Comput Biol Bioinform 2, 273–288 (2005)

    Article  Google Scholar 

  23. Chen, N., Glazier, J., Izaguirre, J., Alber, M.S.: A parallel implementation of the cellular Potts model for simulation of cell-based morphogenesis. Comput Phys Commun 176, 670–681 (2007)

    Article  ADS  Google Scholar 

  24. Thalhauser, C.J., Lowengrub, J.S., Stupack, D., Komarova, N.L.: Selection in spatial stochastic models of cancer: migration as a key modulator of fitness. Biol Direct 5, 21 (2010). doi:10.1186/1745-6150-5-21

    Article  Google Scholar 

  25. Wong, S.Y., Chiam, K.-H., Lim, C.T., Matsudaira, P.: Computational model of cell positioning: directed and collective migration in the intestinal crypt epithelium. J R Soc Interface 7, S351–S363 (2010)

    Article  Google Scholar 

  26. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S., Glazier, J.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137 (2004)

    Article  Google Scholar 

  27. Scianna, M., Preziosi, L., Wolf, K.: A cellular Potts model simulating cell migration on and in matrix environments. Math Biosci Eng 10, 235–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J.F., Lowengrub, J.: The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the cellular Potts model. J Theor Biol 343, 79–91 (2014)

    Article  Google Scholar 

  29. Lauffenburger, D.A., Horwitz, A.F.: Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  Google Scholar 

  30. Czirók, A., Varga, K., Méhes, E., Szabó, A.: Collective cell streams in epithelial monolayers depend on cell adhesion. New J Phys 15, 075006 (2013)

    Article  Google Scholar 

  31. Palieri, B., Bresler, Y., Wirtz, D., Grant, M.: Multiple scale model for cell migration in monolayers: elastic mismatch between cells enhances motility. Sci Rep 5, 11745 (2015)

    Article  ADS  Google Scholar 

  32. Lee, M.-H., Wu, P.-H., Staunton, J.R., Ros, R., Longmore, G.D., Wirtz, D.: Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys J 102, 2731–2741 (2012)

    Article  Google Scholar 

  33. Treloar, K.K., Simpson, M.J., Haridas, P., Manton, K.J., Leavesley, D., Elwain, D.L.S.M., Baker, R.E.: Multiple types of data are required to identify the mechanisms influencing the spatial expansion of melanoma cell colonies. BMC Syst Biol 7, 137 (2013)

    Article  Google Scholar 

  34. Risser, R., Pollack, R.: A nonselective analysis of SV40 transformation of mouse 3T3 cells. Virology 59, 477–489 (1974)

    Article  Google Scholar 

  35. Ito, T., Ishikawa, Y., Okano, S., Hattori, T., Fujii, R., Shinozawa, T., Shibuya, A.: Cloning of human neuroblastoma cells in methylcellulose culture. Cancer Res 47, 4146–4149 (1987)

    Google Scholar 

  36. Kobayashi, K., Huang, C.-I.: Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32, 7070–7077 (1999)

    Article  ADS  Google Scholar 

  37. Diambra, L., Cintra, L.C., Chen, Q., Schubert, D., Costa, L.D.F.: Cell adhesion protein decreases cell motion: statistical characterization of locomotion activity. Phys A 365, 481–490 (2006)

    Article  Google Scholar 

  38. Li, L., Wang, B.H., Wang, S., Moalim-Nour, L., Mohib, K., Lohnes, D., Wang, L.: Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 98, 2442–2451 (2010)

    Article  Google Scholar 

  39. Petitjean, L., Reffay, M., Grasland-Mongrain, E., Poujade, M., Ladoux, B., Buguin, A., Silberzan, P.: Velocity fields in a collectively migrating epithelium. Biophys J 88, 1790–1800 (2010)

    Article  Google Scholar 

  40. Thielicke, W., Stamhuis, E.: Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Software 2, e30 (2014)

    Article  Google Scholar 

  41. Radszuweit, M., Block, M., Hengstler, J.G., Schöll, E., Drasdo, D.: Comparing the growth kinetics of cell populations in two and three dimensions. Phys Rev E 79, 051907 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  42. Puliafito, A., Hufnagel, L., Neveu, P., Streichan, S., Sigal, A., Fygenson, D.K., Shraiman, B.I.: Collective and single cell behaviour in epithelial contact inhibition. Proc Natl Acad Sci U S A 109, 739–744 (2012)

    Article  ADS  Google Scholar 

  43. Friedl, P., Glimour, D.: Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev 10, 445–457 (2009)

    Article  Google Scholar 

  44. Haque, A., Morris, E.R.: Xanthan-like “weak gel” rheology from dispersions of ispaghula seed husk. Carbohydr Polym 22, 223–232 (1993)

    Article  Google Scholar 

  45. Sarkar, N.: Kinetics of thermal gelation of methylcellulose and hydroxy-propyl-methylcellulose in aqueous solutions. Carbohydr Polym 26, 195–203 (1995)

    Article  Google Scholar 

  46. Li, L., Thangamathesvaran, P.M., Yue, C.Y., Tam, K.C., Hu, X., Lam, Y.C.: Gel network structure of methylcellulose in water. Langmuir 17, 8062–8068 (2001)

    Article  Google Scholar 

  47. Szabó, A., Unnep, R., Méhes, E., Twal, W.O., Argraves, W.S., Cao, Y., Czirók, A.: Collective cell motion in endothelial monolayers. Phys Biol 7, 046007 (2010)

    Article  ADS  Google Scholar 

  48. Medzon, E.L., Merchant, D.J.: Interaction of the LM cell surface with methylcellulose and vaccinia virus. Mode of action and implications for large scale vaccine production. In Vitro 7, 46–58 (1971)

    Article  Google Scholar 

  49. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys Rev Lett 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  50. Parisi, G.: On surface growth in random media. Europhys Lett 17, 673–678 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  51. Sneppen, K.: Self-organized pinning and interface growth in a random medium. Phys Rev Lett 69, 3539–3542 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejo Nacional de Investigaciones Cientficas y Técnicas of Argentina (PIP 2231 and PIP 0602) and the Comisión de Investigaciones Científicas (CIC), Pcia. Bs. As. We acknowledge Silvia Coronato for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pasquale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzzio, N.E., Pasquale, M.A., Huergo, M.A.C. et al. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media. J Biol Phys 42, 477–502 (2016). https://doi.org/10.1007/s10867-016-9418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9418-3

Keywords

Navigation