Skip to main content
Log in

Biophysical characterization of a recombinant aminopeptidase II from the thermophilic bacterium Bacillus stearothermophilus

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In the present study, the biophysical properties of His6-tagged Bacillus stearothermophilus aminopeptidase II (His6-tagged BsAmpII) are characterized in detail by gel-filtration, analytical ultracentrifugation, and various spectroscopic techniques. Using size-exclusion chromatography and analytical ultracentrifugation, we demonstrate that His6-tagged BsAmpII exists predominantly as a dimer in solution. The enzyme is active and stable at pHs ranging from 6.5 to 8.5. Far-UV circular dichroism analysis reveals that the secondary structures of His6-tagged BsAmpII are significantly altered in the presence of SDS, whereas the presence of 5–10% acetone and ethanol was harmless to the folding of the enzyme. Thermal unfolding of His6-tagged BsAmpII was found to be irreversible and led to the formation of aggregates. The native enzyme started to unfold beyond 0.6 M guanidine hydrochloride and had a midpoint of denaturation at 1.34 M. This protein remained active at concentrations of urea below 2.7 M but experienced an irreversible unfolding by >5 M denaturant. Taken together, this work lays a foundation for potential biotechnological applications of His6-tagged BsAmpII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonzales, T., Robert-Baudouy, J.: Bacterial aminopeptidases: properties and functions. FEMS Microbiol. Rev. 18, 319–344 (1996)

    Article  Google Scholar 

  2. Sträter, N., Sherratt, D.J., Colloms, S.D.: Leucyl aminopeptidase (animal and plant). In: Barrett, A.J., Rawlings, N.D., Woessner, J.F. (eds.) Handbook of Proteolytic Enzymes, pp. 1384–1389. Academic Press, New York (1998)

    Google Scholar 

  3. Walling, L.L., Gu, Y.: Plant aminopeptidase: occurrence, function and characterization. In: Taylor, A. (ed.) Aminopeptidases, pp. 173–219. Landes Publishing, Austin, TX (1970)

    Google Scholar 

  4. Terenius, L., Sandin, J., Sakurada, T.: Nociceptin/orphanin FQ metabolism and bioactive metabolites. Peptides 21, 919–922 (2000)

    Article  Google Scholar 

  5. Cappiello, M., Lazzarotti, A., Buono, F., Scaloni, A., D’Ambrosio, C., Amodeo, P., Mendez, B.L., Pelosi, P., Del Corso, A., Mura, U.: New role for leucyl aminopeptidase in glutathione turnover. Biochem. J. 378, 35–44 (2004)

    Article  Google Scholar 

  6. Matsumoto, H., Nagasaka, T., Hattori, A., Rogi, T., Tsuruoka, N., Mizutani, S. Tsujimoto, M.: Expression of placental leucine aminopeptidase/oxytocinase in neuronal cell and its action on neuronal peptides. Eur. J. Biochem. 268, 3259–3266 (2001)

    Article  Google Scholar 

  7. Goldberg, A.T., Cascio, P., Saric, T., Rock, K.L.: The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 39, 147–164 (2002)

    Article  Google Scholar 

  8. Mitsui, T., Nomura, S., Itakura, A., Mizutani, S.: Aminopeptidase in health and diseases: role of aminopeptidase in the blood pressure regulation. Biol. Pharmaceut. Bull. 27, 768–771 (2004)

    Article  Google Scholar 

  9. Rao, M.B., Tanksale, A.M., Ghatge M.S., Desphande, V.V.: Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998)

    Google Scholar 

  10. Kamphuis, J., Meijer, E.M., Boesten, W.H.J., Broxterman, Q.B., Kaptein, B., Hermes, H.F.M., Schoemaker, H.E.: Production of natural and synthetic l- and d-amino acids by aminopeptidases and amino amidases. In: Rozzell, J.D., Wagner, F. (eds.) Biocatalytic Production of Amino Acids and Derivatives, pp. 178–206. Wiley, New York (1992)

    Google Scholar 

  11. Fernandez-Espla, M.D., Rul, F.: PepS from Streptococcus thermophilus: a new member of the aminopeptidase T family of thermophilic bacteria. Eur. J. Biochem. 263, 502–510 (1999)

    Article  Google Scholar 

  12. Rawlings, N.D., O’Brien, E., Barrett, A.J.: MEROPS: the protease database. Nucleic Acids Res. 30, 343–346 (2002)

    Article  Google Scholar 

  13. Rawlings, N.D., Barrett, A.J., Bateman, A.: MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–D350 (2012)

    Article  Google Scholar 

  14. Odintsov, S.G., Sabata I., Bourenkov, G., Rybin, V., Bochtler, M.: Staphylococcus aureus aminopeptidase S is a founding member of a new peptidase clan. J. Biol. Chem. 280, 27792–27799 (2005)

    Article  Google Scholar 

  15. Odintsov, S.G., Sabata I., Bourenkov, G., Rybin, V., Bochtler, M.: Substrate access to the active sites in aminopeptidase T, a representative of a new metallopeptidase clan. J. Mol. Biol. 354, 403–412 (2005)

    Article  Google Scholar 

  16. Minagawa, E., Kaminogawa, S., Matsuzawa, H., Ohta, T., Yamauchi, K.: Isolation and characterization of a thermostable aminopeptidase (aminopeptidase T) from Thermus aquaticus YT-1, an extremely thermophilic bacterium. Agric. Biol. Chem. 52, 755–763 (1988)

    Article  Google Scholar 

  17. Stoll, E., Weder, H.G., Zuber, H.: Aminopeptidase II from Bacillus stearothermophilus. Biochim. Biophys. Acta. 438, 212–220 (1976)

    Article  Google Scholar 

  18. Kuo, L.Y., Hwang, G.Y., Lai, Y.J., Yang, S.L., Lin, L.L.: Overexpression, purification, and characterization of the recombinant leucine aminopeptidase II of Bacillus stearothermophilus. Curr. Microbiol. 47, 40–45 (2003)

    Article  Google Scholar 

  19. Kuo, L.Y., Hwang, G.Y., Yang, S.L., Hua, Y.W., Chen, W., Lin, L.L.: Inactivation of Bacillus stearothermophilus leucine aminopeptidase II by hydrogen peroxide and site-directed mutagenesis of methionine residues on the enzyme. Protein J. 23, 295–302 (2004)

    Article  Google Scholar 

  20. Hwang, G.Y., Kuo, L.Y., Tsai, M.R., Yang, S.L., Lin, L.L.: Histidines 345 and 378 of Bacillus stearothermophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme. Antonie van Leeuwenhoek 87, 355–359 (2005)

    Article  Google Scholar 

  21. Yang, S.L., Chen, R.S., Chen, W., Lin, L.L.: Identification of glutamate residues important for catalytic activity of Bacillus stearothermophilus leucine aminopeptidase II. Antonie van Leeuwenhoek 90, 195–199 (2006)

    Article  Google Scholar 

  22. Lin, L.L., Chen, Y.P., Yang, J.C., Hua, Y.W., Wang, W.C., Kuo, L.Y.: Significance of the conserved Tyr352 and Asp380 residues in the catalytic activity of Bacillus stearothermophilus aminopeptidase II as evaluated by site-directed mutagenesis. Protein J. 27, 215–222 (2008)

    Article  Google Scholar 

  23. Brown, P.H., Schuck P.: Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006)

    Article  ADS  Google Scholar 

  24. Schuck, P.: Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 78, 1606–1619 (2000)

    Article  ADS  Google Scholar 

  25. Benjwal, S., Verma, S., Röhm K.H., Gursky, O.: Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci. 15, 635–639 (2006)

    Article  Google Scholar 

  26. Royer, C.A., Mann, C.J., Matthews, C.R.: Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 2, 1844–1852 (1993)

    Article  Google Scholar 

  27. Pace, C.N.: Measuring and increasing protein stability. Trends Biotechnol. 8, 93–98 (1990)

    Article  Google Scholar 

  28. Hensley, P.: Defining the structure and stability of macromolecular assemblies in solution: the re-emergence of analytical ultracentrifugation as a practical tool. Structure 4, 367–373 (1996)

    Article  Google Scholar 

  29. Laue, T.M., Statford, W.F.: Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75–100 (1999)

    Article  Google Scholar 

  30. Wang, Z.F., Huang, M.Q., Zou, X.M., Zhou, H.M.: Unfolding, conformational change of active sites and inactivation of creatine kinase in SDS solutions. Biochim. Biophys. Acta 1251, 109–114 (1995)

    Article  Google Scholar 

  31. He, B., Zhang, Y., Zhang, T., Wang, H.R., Zhou, H.M.: Inactivation and unfolding of aminoacylase during denaturation in sodium dodecysulphate solution. J. Protein Chem. 14, 349–357 (1995)

    Article  Google Scholar 

  32. Zhong, L., Johnson, W.C., Jr.: Environment affects amino acid preference for secondary structure. Proc. Natl. Acad. Sci. U.S.A. 89, 4462–4465 (1992)

    Article  ADS  Google Scholar 

  33. Papavoine, C.H., Konings, R.N., Hilbers, C.W., van de Ven, F.J.: Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR. Biochemistry 33, 12990–12997 (1994)

    Article  Google Scholar 

  34. Pervushin, K.V., Orekhov, V.Y., Popov, A.I., Musina, L.Y., Arseniev, A.S.: Three-dimensional structure of (1-71) bacterioopsin solubilized in methanol/chloroform and SDS micelles determined by 15N-1H heteronuclear NMR spectroscopy. Eur. J. Biochem. 219, 571–583 (1994)

    Article  Google Scholar 

  35. Micelli, S., Meleleo, D., Picciarelli, V., Stoico, M.G., Gallucci, E.: Effect of nanomolar concentrations of sodium dodecyl sulfate, a catalytic inductor of α-helices, on human calcitonin incorporation and channel formation in planar membranes. Biophys. J. 87, 1065–1075 (2004)

    Article  Google Scholar 

  36. Montserret, R., McLeich, M., Bockmann, A., Geourjon, C., Penin, F.: Involvement of electrostatic interaction in the mechanism of peptide folding induced by sodium dodecyl sulfate binding. Biochemistry 39, 8362–8373 (2000)

    Article  Google Scholar 

  37. Gupta, M.N., Roy, I.: Enzymes in organic media: forms, functions and applications. Eur. J. Biochem. 271, 2575–2583 (2004)

    Article  Google Scholar 

  38. Freire, E., van Osdol, W.W., Mayorga, O.L., Sanchez-Ruiz, J.M.: Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu. Rev. Biophys. Biophys. Chem. 19, 159–188 (1990)

    Article  Google Scholar 

  39. Sanchez-Ruiz, J.M.: Theoretical analysis of Lumry–Eyring models in differential scanning calorimetry. Biophys. J. 61, 921–935 (1992)

    Article  Google Scholar 

  40. Galisteo, M.L., Mateo, P.L., Sanchez-Ruiz, J.M.: Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase. Biochemistry 3, 2061–2066 (1991)

    Article  Google Scholar 

  41. Lepock, J.R., Ritchie, K.P., Kolios, M.C., Rodahl, A.M., Heinz, K.A., Kruuv, J.: Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry 31, 12706–12712 (1992)

    Article  Google Scholar 

  42. Plaza del Pino, I.M., Ibarra-Molero, B., Sachez-Ruiz, J.M.: Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40, 58–70 (2000)

    Article  Google Scholar 

  43. Vogl, T., Jatzke, C., Hinz, H.J., Benz, J., Huber, R.: Thermodynamic stability of Annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry 36, 1657–1668 (1997)

    Article  Google Scholar 

  44. Fitter, J.: The perspectives of studying multi-domain protein folding. Cell. Mol. Life Sci. 66, 1672–1681 (2009)

    Article  Google Scholar 

  45. Zheng, J.Y., Janis, L.J.: Influence of pH, buffer species, and storage temperature on physiochemical stability of a humanized monoclonal antibody LA298. Int. J. Pharm. 308, 46–51 (2006)

    Article  Google Scholar 

  46. Katayama, D.S., Nayar, R., Chou, D.K., Valente, J.J., Cooper, J., Henry, C., Vander Velde, D.G., Villarete, L., Liu, C.P., Manning, M.C.: Effect of buffer species on the thermally induced aggregation of interferon-tau. J. Pharm. Sci. 95, 1212–1226 (2006)

    Article  Google Scholar 

  47. Monera, O.D., Kay, C.M., Hodges, R.S.: Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 3, 1984–1991 (1994)

    Article  Google Scholar 

  48. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)

    Book  Google Scholar 

  49. Del Vecchio, P., Granziano, G., Granata, V., Barone, G., Mandrich, L., Rossi, M., Manco, G.: Denaturing action of urea and guanidine hydrochloride towards two thermophilic esterases. Biochem. J. 367, 857–863 (2002)

    Article  Google Scholar 

  50. Karan, R., Capes, M.D., DasSarma, S.: Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosys. 8, 4 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the manuscript. Financial support (NSC 100-2313-B-415-003-MY3) from the National Science Council of Taiwan is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzu-Fan Wang or Long-Liu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TF., Lin, MG., Lo, HF. et al. Biophysical characterization of a recombinant aminopeptidase II from the thermophilic bacterium Bacillus stearothermophilus . J Biol Phys 40, 25–40 (2014). https://doi.org/10.1007/s10867-013-9332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9332-x

Keywords

Navigation