Skip to main content

Advertisement

Log in

A modified active Brownian dynamics model using asymmetric energy conversion and its application to the molecular motor system

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We consider a modified energy depot model in the overdamped limit using an asymmetric energy conversion rate, which consists of linear and quadratic terms in an active particle’s velocity. In order to analyze our model, we adopt a system of molecular motors on a microtubule and employ a flashing ratchet potential synchronized to a stochastic energy supply. By performing an active Brownian dynamics simulation, we investigate effects of the active force, thermal noise, external load, and energy-supply rate. Our model yields the stepping and stalling behaviors of the conventional molecular motor. The active force is found to facilitate the forwardly processive stepping motion, while the thermal noise reduces the stall force by enhancing relatively the backward stepping motion under external loads. The stall force in our model decreases as the energy-supply rate is decreased. Hence, assuming the Michaelis–Menten relation between the energy-supply rate and the an ATP concentration, our model describes ATP-dependent stall force in contrast to kinesin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    Article  ADS  Google Scholar 

  2. Finder, J.T., Simmons, R.M., Spudich, J.A.: Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994)

    Article  ADS  Google Scholar 

  3. Ishijima, A., Harada, Y., Kojima, H., Funatsu, T., Higuchi, H., Yanagida, T.: Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1994)

    Article  Google Scholar 

  4. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J., Oiwa, K.: Dynein structure and power stroke. Nature 421, 715–718 (2003)

    Article  ADS  Google Scholar 

  5. Mallik, R., Carter, B.C., Lex, S.A., King, S.J., Gross, S.P.: Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004)

    Article  ADS  Google Scholar 

  6. Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989)

    Article  ADS  Google Scholar 

  7. Block, S.M., Goldstein, L.S., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    Article  ADS  Google Scholar 

  8. Hackey, D.D.: Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. U. S. A. 91, 6865–6869 (1994)

    Article  ADS  Google Scholar 

  9. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  Google Scholar 

  10. Coppin, C.M., Finder, J.T., Spudich, J.A., Vale, R.D.: Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl. Acad. Sci. U. S. A. 93, 1913–1917 (1996)

    Article  ADS  Google Scholar 

  11. Kojima, H., Muto, E., Higuchi, H., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997)

    Article  Google Scholar 

  12. Hancock, W.O., Howard, J.: Processivity of the motor protein kinesin requires two heads. J. Cell. Biol. 140, 1395–1405 (1998)

    Article  Google Scholar 

  13. Coy, D.L., Wagenbach, M., Howard, J.: Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999)

    Article  Google Scholar 

  14. Kaseda, K., Higuchi, H., Hirose, K.: Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nature Cell Biology 5, 1079–1082 (2003)

    Article  Google Scholar 

  15. Asbury, C.L., Fehr, A.N., Block, S.M.: Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  ADS  Google Scholar 

  16. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  ADS  Google Scholar 

  17. Guydosh, N.R., Block, S.M.: Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009)

    Article  ADS  Google Scholar 

  18. Nishiyama, M., Muto, E., Inoue, Y., Yanagida, T., Higuchi, H.: Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nature Cell Biology 3, 425–428 (2001)

    Article  Google Scholar 

  19. Nishiyama, M., Higuchi, H., Yanagida, T.: Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nature Cell Biology 4, 790–797 (2002)

    Article  Google Scholar 

  20. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  ADS  Google Scholar 

  21. Hackney, D.D.: The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. Proc. Natl. Acad. Sci. U. S. A. 102, 18338–18343 (2005)

    Article  ADS  Google Scholar 

  22. Block, S.M.: Nanometres and piconewtons: the macromolecular mechanics of kinesin. Trends Cell Biol. 5, 169–175 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  23. Block, S.M.: Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007)

    Article  ADS  Google Scholar 

  24. Braxton, S.M., Yount, R.G.: A ratchet diffusion model for directed motion in muscle. Biophys. J. 55, 12a (1989)

    Google Scholar 

  25. Vale, R.D., Oosawa, F.: Protein motors and Maxwell’s demons: does mechanochemical transduction involve a thermal ratchet? Adv. Biophys. 26, 97–134 (1990)

    Google Scholar 

  26. Ajdari, A., Prost, J.: Mouvement induit par un potentiel périodique de basse symétrie: diélectrophorése pulsée. C.R. Acad. Sci. Paris Series II 315, 1635–1639 (1992)

    Google Scholar 

  27. Magnasco, M.O.: Forced thermal ratchets. Phys. Rev. Lett. 71, 1477–1481 (1993)

    Article  ADS  Google Scholar 

  28. Rousselet, J., Salome, L., Ajdari, A., Prost, J.: Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994)

    Article  ADS  Google Scholar 

  29. Astumian, R.D., Bier, M.: Fluctuation driven ratchets: molecular motors. Phys. Rev. Lett. 72, 1766–1769 (1994)

    Article  ADS  Google Scholar 

  30. Huxley, A.F., Simmons, R.M.: Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971)

    Article  ADS  Google Scholar 

  31. Eisenberg, E., Hill, T.L.: A cross-bridge model of muscle contraction. Prog. Biophys. Mol. Biol. 33, 55–82 (1978)

    Article  Google Scholar 

  32. Parmeggiani, A., Julicher, F., Ajdari, A., Prost, J.: Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 2127 (1999)

    Article  ADS  Google Scholar 

  33. Schief, W.R., Clark, R.H., Crevenna, A.H., Howard, J.: Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl. Acad. Sci. U. S. A. 101, 1183–1188 (2004)

    Article  ADS  Google Scholar 

  34. Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)

    Article  ADS  Google Scholar 

  35. Warshaw, D.M., Kennedy, G.G., Work, S.S., Krementsova, E.B., Beck, S., Trybus, K.M.: Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005)

    Article  Google Scholar 

  36. Schweitzer, F., Ebeling, W., Tilch, B.: Complex motion of Brownian particles with energy depots. Phys. Rev. Lett. 80, 5044–5047 (1998)

    Article  ADS  Google Scholar 

  37. Tilch, B., Schweitzer, F., Ebeling, W.: Directed motion of Brownian particles with internal energy depot. Physica A 273, 294–314 (1999)

    Article  ADS  Google Scholar 

  38. Schweitzer, F.: Brownian Agents and Active Particles. Springer, Berlin (2003)

    MATH  Google Scholar 

  39. Ebeling, W., Gudowska-Nowak, E., Fiasconaro, A.: Statistical distributions for Hamiltonian systems coupled to energy reservoirs and applications to molecular energy conversion. Acta Phys. Pol. B 39, 1251–1272 (2008)

    ADS  Google Scholar 

  40. Fiasconaro, A., Ebeling, W., Gudowska-Nowak, E.: Active Brownian motion models and applications to ratchets. Eur. Phys. J. B 65, 403–415 (2008)

    Article  ADS  Google Scholar 

  41. Glück, A., Hüffel, H., Ilijic, S.: Canonical active Brownian motion. Phys. Rev. E 79, 021120 (2009)

    Article  ADS  Google Scholar 

  42. Fiasconaro, A., Gudowska-Nowak, E., Ebeling, W.: Tuning active Brownian motion with shot-noise energy pulses. J. Stat. Mech. P01029 (2009)

  43. Strefler, J., Ebeling, W., Gudowska-Nowak, E., Schimansky-Geier, L.: Dynamics of individuals and swarms with shot noise induced by stochastic food supply. Eur. Phys. J. B 72, 597–606 (2009)

    Article  ADS  MATH  Google Scholar 

  44. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active Brownian particles. Eur. Phys. J. Special Topics 202, 1–162 (2012)

    Article  ADS  Google Scholar 

  45. Zhang, Y., Kim, C.K., Lee, K.-J.-B.: Active motions of Brownian particles in a generalized energy-depot model. New J. Phys. 10, 103018 (2008)

    Article  ADS  Google Scholar 

  46. Lee, K.-J.-B., Kim, C.K., Chung, M.-H.: Walking motion of an overdamped active particle in a ratchet potential. J. Biol. Phys. 38, 305–316 (2012)

    Article  Google Scholar 

  47. Hirokawa, N.: Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998)

    Article  ADS  Google Scholar 

  48. Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motors. Nature Cell Biology 2, 718–723 (2000)

    Article  Google Scholar 

  49. Wang, H.: Several issues in modeling molecular motors. J. Comput. Theor. Nanosci. 5, 2311–2345 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Prof. C. Hyeon at KIAS for fruitful discussions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No.2011-0008074 and 2010-00453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong-Ju-Bock Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, P.J., Lee, KJB. A modified active Brownian dynamics model using asymmetric energy conversion and its application to the molecular motor system. J Biol Phys 39, 439–452 (2013). https://doi.org/10.1007/s10867-013-9300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9300-5

Keywords

Navigation