Skip to main content
Log in

Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vincensini, L., Blisnick, T., Bastin, P.: 1001 model organisms to study cilia and flagella. Biol. Cell 103, 109–130 (2011)

    Article  Google Scholar 

  2. Summers, K.E., Gibbons, I.R.: IR Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl. Acad. Sci. USA 68, 3092–3096 (1971)

    Article  ADS  Google Scholar 

  3. Brokaw, C.J.: Flagellar movement: a sliding filament model. Science 178, 455–462 (1972)

    Article  ADS  Google Scholar 

  4. Brokaw, C.J.: Computer simulation of flagellar movement I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys. J. 12, 564–586 (1972)

    Article  Google Scholar 

  5. Brokaw, C.J.: Bend propagation by a sliding filament model for flagella. J. Exp. Biol. 55, 289–304 (1971)

    Google Scholar 

  6. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E., Yanagida T.: Dynein arms are oscillating force generators. Nature 393, 711–714 (1998)

    Article  ADS  Google Scholar 

  7. Hilfinger, A., Chattopadhyay, A.K., Jülicher, F.: Nonlinear dynamics of cilia and flagella. Phys. Rev. E 79, 051918 (2009)

    Article  ADS  Google Scholar 

  8. Lindemann, C.B.: Testing the geometric clutch hypothesis. Biol. Cell 96, 681–690 (2004)

    Article  Google Scholar 

  9. Polin, M., Tuval, I., Drescher, K., Gollub, J.P., Goldstein, R.E.: Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325, 487–490 (2009)

    Article  ADS  Google Scholar 

  10. Brokaw, C.J.: Introduction: generation of the bending cycle in cilia and flagella. Prog. Clin. Biol. Res. 80, 137–141 (1982)

    Google Scholar 

  11. Hoops, H.J., Witman, G.B.: Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J. Cell Biol. 97, 902–908 (1983)

    Article  Google Scholar 

  12. Hosokawa, Y., Miki-Noumura, T.: Bending motion of Chlamydomonas axonemes after extrusion of central-pair microtubules. J Cell Biol. 105, 1297–1301 (1987)

    Article  Google Scholar 

  13. Mitchell, D.R., Rosenbaum, J.L.: A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J. Cell Biol. 100, 1228–1234 (1985)

    Article  Google Scholar 

  14. Brokaw, C.J., Kamiya, R.: Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskelet. 8, 68–75 (1987)

    Article  Google Scholar 

  15. Sakakibara, H., Mitchell, D.R., Kamiya, R.: A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain. J. Cell Biol. 113, 615–622 (1991)

    Article  Google Scholar 

  16. Bayly, P.V., Lewis, B.L., Kemp, P.S., Pless, R.B., Dutcher, S.K.: Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii. Cytoskeleton 67, 56–69 (2010)

    Google Scholar 

  17. Wright, R.L., Chojnacki, B., Jarvik, J.W.: Abnormal basal-body number, location, and orientation in a striated fiber-defective mutant of Chlamydomonas reinhardtii. J. Cell Biol. 96, 1697–1707 (1983)

    Article  Google Scholar 

  18. Goodenough, U.W., St. Clair, H.S.: BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J. Cell Biol. 66, 480–491 (1975)

    Article  Google Scholar 

  19. Kumi-Matsuura, I., Lefebvre, P. A. , Kamiya, R., Hirono, M.: Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663–671 (2004)

    Article  Google Scholar 

  20. Piasecki, B.P., LaVoie, M., Tam, L.W., Lefebvre, P.A., Silflow, C.D.: The Uni2 phosphoprotein is a cell cycle-regulated component of the basal body maturation pathway in Chlamydomonas reinhardtii. Mol. Biol. Cell 19, 262–273 (2008)

    Article  Google Scholar 

  21. D’Souza J.S., Gudipati, M., Dharmadhikari, J.A., Dharmadhikari, A.K., Kashyap, A., Sivaramakrishnan, M., Rao, U., Mathur, D., Rao, B.J.: Flagella-generated forces reveal gear-type motor in single cells of the green alga, Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 380, 266–270 (2009)

    Article  Google Scholar 

  22. McVittie, A.: Flagellum mutants of Chlamydomonas reinhardtii. J. Gen. Microbiol. 71, 525–540 (1972)

    Article  Google Scholar 

  23. Barsel, S.-E., Wexler, D.E., Lefebvre, P.A.: Genetic analysis of long flagella mutants of Chlamydomonas reinhardtii. Genetics 118, 637–648 (1988)

    Google Scholar 

  24. Asleson, C.M., Lefebvre, P.A.: Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148, 693–702 (1998)

    Google Scholar 

  25. Berman, S.A., Wilson, N.F., Haas, N.A., Lefebvre, P.A.: A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003)

    Article  Google Scholar 

  26. Tam, L.-W., Dentler, W.L., Lefebvre, P.A.: Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas. J. Cell Biol. 163, 597–607 (2003)

    Article  Google Scholar 

  27. Nguyen, R.L., Tam, L.W., Lefebvre, P.A.: The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control. Genetics 169, 1415–1424 (2005)

    Article  Google Scholar 

  28. Lefebvre, P.A., Barsel, S., Stuckey, M., Swartz, L., Wexler, D.: Genetic analysis of flagellar gene expression in Chlamydomonas. In: De Brabander, M., De May, J. (eds.) Microtubules and Microtubule Inhibitors, pp. 13–19. Elsevier, Amsterdam (1985)

    Google Scholar 

  29. Harris, E.H.: The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego (1989)

    Google Scholar 

  30. Kato-Minoura, T., Hirono, M., Kamiya, R.: Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene. J. Cell Biol. 137, 649–656 (1997)

    Article  Google Scholar 

  31. Frey, E., Brokaw, C.J., Omoto, C.K.: Reactivation at low ATP distinguishes among classes of paralyzed flagella mutants. Cell Motil. Cytoskelet. 38, 91–99 (1997)

    Article  Google Scholar 

  32. Yagi, T., Minoura, I., Fujiwara, A., Saito, R., Yasunaga, T., Hirono, M., Kamiya R.: An axonemal dynein particularly important for flagellar movement at high viscosity. Implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J. Biol. Chem. 280, 41412–41420 (2005)

    Article  Google Scholar 

  33. Yamamoto, R., Hirono, M., Kamiya R.: Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J. Cell Biol. 190, 65–71 (2010)

    Article  Google Scholar 

  34. Wei, M., Sivadas, P., Owen, H.A., Mitchell, D.R., Yang, P.: Chlamydomonas mutants display reversible deficiencies in flagellar beating and axonemal assembly. Cytoskeleton 67, 71–80 (2010)

    Article  Google Scholar 

  35. Gudipati, M., D’Souza, J.S., Dharmadhikari, J.A., Dharmadhikari, A.K., Rao, B.J., Mathur D.: An optically-controllable, micron-sized motor based on live cells. Opt. Express 13, 1555–1560 (2005)

    Article  ADS  Google Scholar 

  36. Moharikar, S., D’Souza, J.S., Kulkarni, A.B., Rao B.J.: Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: detection and functional analyses. J. Phycol. 42, 423–433 (2006)

    Article  Google Scholar 

  37. Witman, G.B.: Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 134, 280–290 (1986)

    Article  Google Scholar 

  38. Nakano, I., Kobayashi, T., Yoshimura, M., Shingyoji, C.: Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J. Cell Sci. 116, 1627–1636 (2003)

    Article  Google Scholar 

  39. Wargo, M.J., Smith, E.F.: Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc. Natl. Acad. Sci. USA 100, 137–142 (2003)

    Article  ADS  Google Scholar 

  40. Wargo, M.J., McPeek, M.A. Smith, E.F.: Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules. J. Cell Sci. 117, 2533–2544 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The Inter-Academy Summer Students program supported Anisha R. Kashyap. We thank P. A. Lefebvre for kindly donating the lf4 mutant cells and Krishanu Ray for permitting use of the TEM facility at the Tata Institute of Fundamental Research. We also acknowledge valuable input provided by David Mitchell (Upstate Medical University, USA) for standardizing the conditions for the TEM of axonemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta S. D’Souza.

Additional information

Dolly K. Khona and Venkatramanan G. Rao contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 2.77 MB)

(AVI 8.57 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khona, D.K., Rao, V.G., Motiwalla, M.J. et al. Anomalies in the motion dynamics of long-flagella mutants of Chlamydomonas reinhardtii . J Biol Phys 39, 1–14 (2013). https://doi.org/10.1007/s10867-012-9282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9282-8

Keywords

Navigation