Skip to main content
Log in

Sphingolipids and mitochondrial apoptosis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahan CE, Miranda GE, Agnolazza DL, Politi LE, Rotstein NP (2010) Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors. Invest Ophthalmol Vis Sci 51:1171–1180. doi:10.1167/iovs.09-3909

    Article  Google Scholar 

  • Alphonse G et al (2013) p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or carbon ion irradiation. BMC Cancer 13:151. doi:10.1186/1471-2407-13-151

    Article  CAS  Google Scholar 

  • Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T (2001) Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med 31:717–728

    Article  CAS  Google Scholar 

  • Annis MG, Zamzami N, Zhu W, Penn LZ, Kroemer G, Leber B, Andrews DW (2001) Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20:1939–1952

    Article  CAS  Google Scholar 

  • Antoon JW et al (2011) Targeting NFkB mediated breast cancer chemoresistance through selective inhibition of sphingosine kinase-2. Cancer Biol Ther 11:678–689

    Article  CAS  Google Scholar 

  • Babiychuk EB, Atanassoff AP, Monastyrskaya K, Brandenberger C, Studer D, Allemann C, Draeger A (2011) The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS ONE 6:e23706. doi:10.1371/journal.pone.0023706

    Article  CAS  Google Scholar 

  • Baranowski M, Gorski J (2011) Heart sphingolipids in health and disease. Adv Exp Med Biol 721:41–56. doi:10.1007/978-1-4614-0650-1_3

    Article  CAS  Google Scholar 

  • Beckham TH et al (2013) LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther 344:167–178. doi:10.1124/jpet.112.199216

    Article  CAS  Google Scholar 

  • Belaud-Rotureau MA et al (2000) Early transitory rise in intracellular pH leads to Bax conformation change during ceramide-induced apoptosis. Apoptosis 5:551–560

    Article  CAS  Google Scholar 

  • Bettaieb A, Plo I, Mansat-De Mas V, Quillet-Mary A, Levade T, Laurent G, Jaffrezou JP (1999) Daunorubicin- and mitoxantrone-triggered phosphatidylcholine hydrolysis: implication in drug-induced ceramide generation and apoptosis. Mol Pharmacol 55:118–125

    CAS  Google Scholar 

  • Beverly LJ, Howell LA, Hernandez-Corbacho M, Casson L, Chipuk JE, Siskind LJ (2013) BAK activation is necessary and sufficient to drive ceramide synthase-dependent ceramide accumulation following inhibition of BCL2-like proteins. Biochem J 452:111–119. doi:10.1042/BJ20130147

    Article  CAS  Google Scholar 

  • Bigi A et al (2010) Human sialidase NEU4 long and short are extrinsic proteins bound to outer mitochondrial membrane and the endoplasmic reticulum, respectively. Glycobiology 20:148–157. doi:10.1093/glycob/cwp156

    Article  CAS  Google Scholar 

  • Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533. doi:10.1042/BJ20031819

    Article  CAS  Google Scholar 

  • Birbes H, El Bawab S, Hannun YA, Obeid LM (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J: Off Publ Fed Am Soc Exp Biol 15:2669–2679

    Article  CAS  Google Scholar 

  • Birbes H, El Bawab S, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzym Regul 42:113–129

    Article  CAS  Google Scholar 

  • Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451

    Article  CAS  Google Scholar 

  • Blaschko H (1975) The first Thudichum lecture, 15 January 1974: biochemical specificity in neuromal function. Biochem Soc Trans 3:27–37

    Article  CAS  Google Scholar 

  • Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294

    Article  CAS  Google Scholar 

  • Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    Article  CAS  Google Scholar 

  • Caricchio R, D’Adamio L, Cohen PL (2002) Fas, ceramide and serum withdrawal induce apoptosis via a common pathway in a type II Jurkat cell line. Cell Death Differ 9:574–580. doi:10.1038/sj/cdd/4400996

    Article  CAS  Google Scholar 

  • Cartron PF, Juin P, Oliver L, Martin S, Meflah K, Vallette FM (2003) Nonredundant role of Bax and Bak in Bid-mediated apoptosis. Mol Cell Biol 23:4701–4712

    Article  CAS  Google Scholar 

  • Casson L et al (2013) Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins. PLoS ONE 8:e54525. doi:10.1371/journal.pone.0054525

    Article  CAS  Google Scholar 

  • Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC (2001) Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 47:444–450

    Article  CAS  Google Scholar 

  • Charruyer A, Jean C, Colomba A, Jaffrezou JP, Quillet-Mary A, Laurent G, Bezombes C (2007) PKCzeta protects against UV-C-induced apoptosis by inhibiting acid sphingomyelinase-dependent ceramide production. Biochem J 405:77–83. doi:10.1042/BJ20061528

    Article  CAS  Google Scholar 

  • Chatterjee M, Wu S (2001) Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem 219:21–27

    Article  CAS  Google Scholar 

  • Chen M, Quintans J, Fuks Z, Thompson C, Kufe DW, Weichselbaum RR (1995) Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer Res 55:991–994

    CAS  Google Scholar 

  • Chen JS, Chai MQ, Chen HH, Zhao S, Song JG (2000) Regulation of phospholipase D activity and ceramide production in daunorubicin-induced apoptosis in A-431 cells. Biochim Biophys Acta 1488:219–232

    Article  CAS  Google Scholar 

  • Chen CL, Lin CF, Chiang CW, Jan MS, Lin YS (2006) Lithium inhibits ceramide- and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Mol Pharmacol 70:510–517. doi:10.1124/mol.106.024059

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2004) Cytoplasmic p53: bax and forward. Cell Cycle 3:429–431

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18:157–164. doi:10.1016/j.tcb.2008.01.007

    Article  CAS  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381

    Article  CAS  Google Scholar 

  • Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014. doi:10.1126/science.1092734

    Article  CAS  Google Scholar 

  • Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402. doi:10.1038/sj.cdd.4401963

    Article  CAS  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310. doi:10.1016/j.molcel.2010.01.025

    Article  CAS  Google Scholar 

  • Chipuk JE et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000. doi:10.1016/j.cell.2012.01.038

    Article  CAS  Google Scholar 

  • Chmura SJ, Nodzenski E, Beckett MA, Kufe DW, Quintans J, Weichselbaum RR (1997) Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57:1270–1275

    CAS  Google Scholar 

  • Ciarlo L et al (2010) Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ 17:1047–1058. doi:10.1038/cdd.2009.208

    Article  CAS  Google Scholar 

  • Colombini M (2010) Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim Biophys Acta 1797:1239–1244. doi:10.1016/j.bbabio.2010.01.021

    Article  CAS  Google Scholar 

  • Colombini M (2013) Membrane channels formed by ceramide. Handb Exp Pharmacol :109–126 doi:10.1007/978-3-7091-1368-4_6.

  • Come MG, Bettaieb A, Skladanowski A, Larsen AK, Laurent G (1999) Alteration of the daunorubicin-triggered sphingomyelin-ceramide pathway and apoptosis in MDR cells: influence of drug transport abnormalities. Int J Cancer J Int du Cancer 81:580–587

    Article  CAS  Google Scholar 

  • Csordas G et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921. doi:10.1083/jcb.200604016

    Article  CAS  Google Scholar 

  • Deng J, Zhang H, Kloosterboer F, Liao Y, Klostergaard J, Levitt ML, Hung MC (2002) Ceramide does not act as a general second messenger for ultraviolet-induced apoptosis. Oncogene 21:44–52. doi:10.1038/sj.onc.1204900

    Article  CAS  Google Scholar 

  • Deng X et al (2008) Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322:110–115. doi:10.1126/science.1158111

    Article  CAS  Google Scholar 

  • Don AS, Rosen H (2009) A lipid binding domain in sphingosine kinase 2. Biochem Biophys Res Commun 380:87–92. doi:10.1016/j.bbrc.2009.01.075

    Article  CAS  Google Scholar 

  • Ebel P et al (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 288:21433–21447. doi:10.1074/jbc.M113.479907

    Article  CAS  Google Scholar 

  • Ebel P et al (2014) Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J 461:147–158. doi:10.1042/BJ20131242

    Article  CAS  Google Scholar 

  • El Bawab S, Roddy P, Qian T, Bielawska A, Lemasters JJ, Hannun YA (2000) Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275:21508–21513. doi:10.1074/jbc.M002522200

    Article  Google Scholar 

  • El Bawab S, Birbes H, Roddy P, Szulc ZM, Bielawska A, Hannun YA (2001) Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J Biol Chem 276:16758–16766. doi:10.1074/jbc.M009331200

    Article  Google Scholar 

  • Elrick MJ, Fluss S, Colombini M (2006) Sphingosine, a product of ceramide hydrolysis, influences the formation of ceramide channels. Biophys J 91:1749–1756. doi:10.1529/biophysj.106.088443

    Article  CAS  Google Scholar 

  • Ferlinz K et al (2001) Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 276:35352–35360. doi:10.1074/jbc.M103066200

    Article  CAS  Google Scholar 

  • Fernandez-Ayala DJ et al (2000) Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal 2:263–275

    Article  CAS  Google Scholar 

  • Follis AV et al (2013) PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 9:163–168. doi:10.1038/nchembio.1166

    Article  CAS  Google Scholar 

  • Gagliostro V et al (2012) Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 44:2135–2143. doi:10.1016/j.biocel.2012.08.025

    Article  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev 13:780–788. doi:10.1038/nrm3479

    Article  CAS  Google Scholar 

  • Gandy KA, Obeid LM (2013) Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol :275–303 doi:10.1007/978-3-7091-1511-4_14.

  • Ganesan V, Colombini M (2010) Regulation of ceramide channels by Bcl-2 family proteins. FEBS Lett 584:2128–2134. doi:10.1016/j.febslet.2010.02.032

    Article  CAS  Google Scholar 

  • Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K, Colombini M (2010) Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15:553–562. doi:10.1007/s10495-009-0449-0

    Article  CAS  Google Scholar 

  • Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377

    Article  CAS  Google Scholar 

  • Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2002) Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha. J Biol Chem 277:36443–36448. doi:10.1074/jbc.M206021200

    Article  CAS  Google Scholar 

  • Garofalo T et al (2007) Do mitochondria act as “cargo boats” in the journey of GD3 to the nucleus during apoptosis? FEBS Lett 581:3899–3903. doi:10.1016/j.febslet.2007.07.020

    Article  CAS  Google Scholar 

  • Geilen CC, Bektas M, Wieder T, Kodelja V, Goerdt S, Orfanos CE (1997) 1alpha,25-dihydroxyvitamin D3 induces sphingomyelin hydrolysis in HaCaT cells via tumor necrosis factor alpha. J Biol Chem 272:8997–9001

    Article  CAS  Google Scholar 

  • Geley S, Hartmann BL, Kofler R (1997) Ceramides induce a form of apoptosis in human acute lymphoblastic leukemia cells that is inhibited by Bcl-2, but not by CrmA. FEBS Lett 400:15–18

    Article  CAS  Google Scholar 

  • Gentil B, Grimot F, Riva C (2003) Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol Cell Biochem 254:203–210

    Article  CAS  Google Scholar 

  • Ginkel C et al (2012) Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem 287:41888–41902. doi:10.1074/jbc.M112.413500

    Article  CAS  Google Scholar 

  • Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol 72:1343–1353. doi:10.1016/j.bcp.2006.07.014

    Article  CAS  Google Scholar 

  • Grassme H et al (2001a) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596. doi:10.1074/jbc.M101207200

    Article  CAS  Google Scholar 

  • Grassme H, Schwarz H, Gulbins E (2001b) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284:1016–1030. doi:10.1006/bbrc.2001.5045 S0006-291X(01)95045-4

    Article  CAS  Google Scholar 

  • Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470. doi:10.1038/sj.onc.1206540

    Article  CAS  Google Scholar 

  • Gudz TI, Tserng KY, Hoppel CL (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158

    Article  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077. doi:10.1038/sj.onc.1207146

    Article  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    Article  CAS  Google Scholar 

  • Hait NC, Bellamy A, Milstien S, Kordula T, Spiegel S (2007) Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 282:12058–12065. doi:10.1074/jbc.M609559200

    Article  CAS  Google Scholar 

  • Hanada K (2006) Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem 286:23–31. doi:10.1007/s11010-005-9044-z

    Article  CAS  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Kawano M (2007) CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771:644–653. doi:10.1016/j.bbalip.2007.01.009

    Article  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev 9:139–150

    Article  CAS  Google Scholar 

  • Hawthorne JN (1975) A note on the life of J.L.W. Thudichum (1829–1901). Biochem Soc Trans 3:591

    Article  CAS  Google Scholar 

  • Hearps AC, Burrows J, Connor CE, Woods GM, Lowenthal RM, Ragg SJ (2002) Mitochondrial cytochrome c release precedes transmembrane depolarisation and caspase-3 activation during ceramide-induced apoptosis of Jurkat T cells. Apoptosis 7:387–394

    Article  CAS  Google Scholar 

  • Heffernan-Stroud LA, Obeid LM (2013) Sphingosine kinase 1 in cancer. Adv Cancer Res 117:201–235. doi:10.1016/B978-0-12-394274-6.00007-8

    Article  CAS  Google Scholar 

  • Heinrich M et al (2000) Ceramide as an activator lipid of cathepsin D. Adv Exp Med Biol 477:305–315

    Article  CAS  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838. doi:10.1016/S0006-3495(00)76640-9

    Article  CAS  Google Scholar 

  • Hwang YH, Tani M, Nakagawa T, Okino N, Ito M (2005) Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun 331:37–42. doi:10.1016/j.bbrc.2005.03.134

    Article  CAS  Google Scholar 

  • Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278:46832–46839. doi:10.1074/jbc.M306577200

    Article  CAS  Google Scholar 

  • Ikeda M, Kihara A, Igarashi Y (2004) Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun 325:338–343. doi:10.1016/j.bbrc.2004.10.036

    Article  CAS  Google Scholar 

  • Imgrund S et al (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560. doi:10.1074/jbc.M109.031971

    Article  CAS  Google Scholar 

  • Ito M, Okino N, Tani M (2014) New insight into the structure, reaction mechanism, and biological functions of neutral ceramidase. Biochim Biophys Acta 1841:682–691. doi:10.1016/j.bbalip.2013.09.008

    Article  CAS  Google Scholar 

  • Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30:556–568. doi:10.1038/emboj.2010.346

    Article  CAS  Google Scholar 

  • Jaffrezou JP et al (1996) Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15:2417–2424

    CAS  Google Scholar 

  • Jenkins RW, Canals D, Hannun YA (2009) Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal 21:836–846

    Article  CAS  Google Scholar 

  • Jennemann R et al (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21:586–608. doi:10.1093/hmg/ddr494

    Article  CAS  Google Scholar 

  • Jensen SA et al (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci U S A 111:5682–5687. doi:10.1073/pnas.1316700111

    Article  CAS  Google Scholar 

  • Jin J et al (2008) Ceramide generated by sphingomyelin hydrolysis and the salvage pathway is involved in hypoxia/reoxygenation-induced Bax redistribution to mitochondria in NT-2 cells. J Biol Chem 283:26509–26517. doi:10.1074/jbc.M801597200

    Article  CAS  Google Scholar 

  • Karasavvas N, Erukulla RK, Bittman R, Lockshin R, Hockenbery D, Zakeri Z (1996) BCL-2 suppresses ceramide-induced cell killing. Cell Death Differ 3:149–151

    CAS  Google Scholar 

  • Kawano M, Kumagai K, Nishijima M, Hanada K (2006) Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 281:30279–30288. doi:10.1074/jbc.M605032200

    Article  CAS  Google Scholar 

  • Kim HJ, Mun JY, Chun YJ, Choi KH, Kim MY (2001) Bax-dependent apoptosis induced by ceramide in HL-60 cells. FEBS Lett 505:264–268

    Article  CAS  Google Scholar 

  • Kim HJ, Oh JE, Kim SW, Chun YJ, Kim MY (2008) Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer Lett 260:88–95. doi:10.1016/j.canlet.2007.10.030

    Article  CAS  Google Scholar 

  • Kogot-Levin A, Saada A (2014) Ceramide and the mitochondrial respiratory chain. Biochimie 100:88–94. doi:10.1016/j.biochi.2013.07.027

    Article  CAS  Google Scholar 

  • Kolter T (2011) A view on sphingolipids and disease. Chem Phys Lipids 164:590–606. doi:10.1016/j.chemphyslip.2011.04.013

    Article  CAS  Google Scholar 

  • Kroesen BJ, Pettus B, Luberto C, Busman M, Sietsma H, de Leij L, Hannun YA (2001) Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J Biol Chem 276:13606–13614

    CAS  Google Scholar 

  • Kucuksayan E, Konuk EK, Demir N, Mutus B, Aslan M (2014) Neutral sphingomyelinase inhibition decreases ER stress-mediated apoptosis and inducible nitric oxide synthase in retinal pigment epithelial cells. Free Radic Biol Med 72:113–123. doi:10.1016/j.freeradbiomed.2014.04.013

    Article  CAS  Google Scholar 

  • Kujjo LL et al (2013) Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev 134:43–52. doi:10.1016/j.mad.2012.12.001

    Article  CAS  Google Scholar 

  • Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287:21025–21033. doi:10.1074/jbc.M112.363580

    Article  CAS  Google Scholar 

  • Lee H et al (2011) Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS ONE 6:e19783. doi:10.1371/journal.pone.0019783

    Article  CAS  Google Scholar 

  • Li R, Liu Y, Ladisch S (2001) Enhancement of epidermal growth factor signaling and activation of SRC kinase by gangliosides. J Biol Chem 276:42782–42792. doi:10.1074/jbc.M101481200

    Article  CAS  Google Scholar 

  • Lima S, Spiegel S (2013) Sphingosine kinase: a closer look at last. Structure 21:690–692. doi:10.1016/j.str.2013.04.006

    Article  CAS  Google Scholar 

  • Lin CF et al (2004) Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced apoptosis. J Biol Chem 279:40755–40761

    Article  CAS  Google Scholar 

  • Lin CF et al (2005) Bcl-2 rescues ceramide- and etoposide-induced mitochondrial apoptosis through blockage of caspase-2 activation. J Biol Chem 280:23758–23765. doi:10.1074/jbc.M412292200

    Article  CAS  Google Scholar 

  • Lindsten T et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    Article  CAS  Google Scholar 

  • Liu H et al (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520. doi:10.1074/jbc.M002759200

    Article  CAS  Google Scholar 

  • Liu H et al (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278:40330–40336. doi:10.1074/jbc.M304455200

    Article  CAS  Google Scholar 

  • Liu Y, Li R, Ladisch S (2004) Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem 279:36481–36489. doi:10.1074/jbc.M402880200

    Article  CAS  Google Scholar 

  • Liu YY et al (2008) A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J : Off Publ Fed Am Soc Exp Biol 22:2541–2551. doi:10.1096/fj.07-092981

    Article  CAS  Google Scholar 

  • Liu X et al (2010) Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116:4192–4201. doi:10.1182/blood-2010-02-271080

    Article  CAS  Google Scholar 

  • Lu FG, Wong CS (2004) Radiation-induced apoptosis of oligodendrocytes and its association with increased ceramide and down-regulated protein kinase B/Akt activity. Int J Radiat Biol 80:39–51. doi:10.1080/09553000310001642876

    Article  CAS  Google Scholar 

  • Lucke T, Hoppner W, Schmidt E, Illsinger S, Das AM (2004) Fabry disease: reduced activities of respiratory chain enzymes with decreased levels of energy-rich phosphates in fibroblasts. Mol Genet Metab 82:93–97. doi:10.1016/j.ymgme.2004.01.011

    Article  CAS  Google Scholar 

  • Malina HZ, Hess OM (2004) Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function. BMC Cell Biol 5:14

    Article  Google Scholar 

  • Mansat V, Bettaieb A, Levade T, Laurent G, Jaffrezou JP (1997) Serine protease inhibitors block neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. FASEB J : Off Publ Fed Am Soc Exp Biol 11:695–702

    CAS  Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276:26577–26588. doi:10.1074/jbc.M102818200

    Article  CAS  Google Scholar 

  • Mao C et al (2003) Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides. J Biol Chem 278:31184–31191. doi:10.1074/jbc.M303875200

    Article  CAS  Google Scholar 

  • Martinez-Abundis E, Correa F, Pavon N, Zazueta C (2009) Bax distribution into mitochondrial detergent-resistant microdomains is related to ceramide and cholesterol content in postischemic hearts. FEBS J 276:5579–5588. doi:10.1111/j.1742-4658.2009.07239.x

    Article  CAS  Google Scholar 

  • Matarrese P et al (2005) Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J Biol Chem 280:6969–6985. doi:10.1074/jbc.M409752200

    Article  CAS  Google Scholar 

  • McIlwain H (1975) The second Thudichum lecture. Cerebral isolates and neurochemical discovery. Biochem Soc Trans 3:579–590

    Article  CAS  Google Scholar 

  • Mesicek J et al (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22:1300–1307. doi:10.1016/j.cellsig.2010.04.006

    Article  CAS  Google Scholar 

  • Min J, Mesika A, Sivaguru M, Van Veldhoven PP, Alexander H, Futerman AH, Alexander S (2007) (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res : MCR 5:801–812. doi:10.1158/1541-7786.MCR-07-0100

    Article  CAS  Google Scholar 

  • Moeller BJ, Pasqualini R, Arap W (2009) Ceramide-mediated apoptosis following ionizing radiation in human prostate cancer cells: PKCalpha joins the fray. Cancer Biol Ther 8:64–65

    Article  CAS  Google Scholar 

  • Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA, Obeid LM (2011) Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 52:68–77. doi:10.1194/jlr.M009142

    Article  CAS  Google Scholar 

  • Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 441:789–802. doi:10.1042/BJ20111626

    Article  CAS  Google Scholar 

  • Noda S, Yoshimura S, Sawada M, Naganawa T, Iwama T, Nakashima S, Sakai N (2001) Role of ceramide during cisplatin-induced apoptosis in C6 glioma cells. J Neuro-Oncol 52:11–21

    Article  CAS  Google Scholar 

  • Nomura M, Shimizu S, Ito T, Narita M, Matsuda H, Tsujimoto Y (1999) Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res 59:5542–5548

    CAS  Google Scholar 

  • Novgorodov SA, Gudz TI (2009) Ceramide and mitochondria in ischemia/reperfusion. J Cardiovasc Pharmacol 53:198–208. doi:10.1097/FJC.0b013e31819b52d5

    Article  CAS  Google Scholar 

  • Novgorodov SA, Gudz TI (2011) Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol 2:347–361

    CAS  Google Scholar 

  • Novgorodov SA, Wu BX, Gudz TI, Bielawski J, Ovchinnikova TV, Hannun YA, Obeid LM (2011) Novel pathway of ceramide production in mitochondria: thioesterase and neutral ceramidase produce ceramide from sphingosine and acyl-CoA. J Biol Chem 286:25352–25362. doi:10.1074/jbc.M110.214866

    Article  CAS  Google Scholar 

  • Novgorodov SA et al (2014) Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J Biol Chem 289:13142–13154. doi:10.1074/jbc.M113.530311

    Article  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  CAS  Google Scholar 

  • Pacher P, Hajnoczky G (2001) Propagation of the apoptotic signal by mitochondrial waves. EMBO J 20:4107–4121

    Article  CAS  Google Scholar 

  • Park JH, Schuchman EH (2006) Acid ceramidase and human disease. Biochim Biophys Acta 1758:2133–2138. doi:10.1016/j.bbamem.2006.08.019

    Article  CAS  Google Scholar 

  • Park JY, Kim MJ, Kim YK, Woo JS (2011) Ceramide induces apoptosis via caspase-dependent and caspase-independent pathways in mesenchymal stem cells derived from human adipose tissue. Arch Toxicol 85:1057–1065. doi:10.1007/s00204-011-0645-x

    Article  CAS  Google Scholar 

  • Park JW, Park WJ, Kuperman Y, Boura-Halfon S, Pewzner-Jung Y, Futerman AH (2013a) Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57:525–532. doi:10.1002/hep.26015

    Article  CAS  Google Scholar 

  • Park WJ et al (2013b) Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization. J Biol Chem 288:30904–30916. doi:10.1074/jbc.M112.448852

    Article  CAS  Google Scholar 

  • Park JW, Park WJ, Futerman AH (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta 1841:671–681. doi:10.1016/j.bbalip.2013.08.019

    Article  CAS  Google Scholar 

  • Parra V et al (2008) Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res 77:387–397

    Article  CAS  Google Scholar 

  • Patwardhan GA, Liu YY (2011) Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 50:104–114. doi:10.1016/j.plipres.2010.10.003

    Article  CAS  Google Scholar 

  • Perera MN, Lin SH, Peterson YK, Bielawska A, Szulc ZM, Bittman R, Colombini M (2012) Bax and Bcl-xL exert their regulation on different sites of the ceramide channel. Biochem J 445:81–91. doi:10.1042/BJ20112103

    Article  CAS  Google Scholar 

  • Perfettini JL, Kroemer RT, Kroemer G (2004) Fatal liaisons of p53 with Bax and Bak. Nat Cell Biol 6:386–388

    Article  CAS  Google Scholar 

  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275:9078–9084

    Article  CAS  Google Scholar 

  • Petrache I et al (2013) Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS ONE 8:e62968. doi:10.1371/journal.pone.0062968

    Article  CAS  Google Scholar 

  • Pewzner-Jung Y et al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285:10902–10910 doi: 10.1074/jbc.M109.077594.

  • Pewzner-Jung Y et al. A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923 doi: 10.1074/jbc.M109.077610.

  • Pewzner-Jung Y et al (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923. doi:10.1074/jbc.M109.077610

    Article  CAS  Google Scholar 

  • Pewzner-Jung Y et al (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem 285:10902–10910. doi:10.1074/jbc.M109.077594

    Article  CAS  Google Scholar 

  • Phillips DC, Martin S, Doyle BT, Houghton JA (2007) Sphingosine-induced apoptosis in rhabdomyosarcoma cell lines is dependent on pre-mitochondrial Bax activation and post-mitochondrial caspases. Cancer Res 67:756–764. doi:10.1158/0008-5472.CAN-06-2374

    Article  CAS  Google Scholar 

  • Pinton P, Giorgi C, Pandolfi PP (2011) The role of PML in the control of apoptotic cell fate: a new key player at ER-mitochondria sites. Cell Death Differ 18:1450–1456. doi:10.1038/cdd.2011.31

    Article  CAS  Google Scholar 

  • Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36:97–107. doi:10.1016/j.tibs.2010.08.001

    Article  CAS  Google Scholar 

  • Pitson SM et al (2005) Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med 201:49–54. doi:10.1084/jem.20040559

    Article  CAS  Google Scholar 

  • Pyne NJ, Tonelli F, Lim KG, Long J, Edwards J, Pyne S (2012) Targeting sphingosine kinase 1 in cancer. Adv Biol Regul 52:31–38. doi:10.1016/j.advenzreg.2011.07.001

    Article  CAS  Google Scholar 

  • Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–21395

    Article  CAS  Google Scholar 

  • Rao RP et al (2014) Ceramide transfer protein deficiency compromises organelle function and leads to senescence in primary cells. PLoS ONE 9:e92142. doi:10.1371/journal.pone.0092142

    Article  CAS  Google Scholar 

  • Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB (2002) Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3:932–939. doi:10.1038/ni834

    Article  CAS  Google Scholar 

  • Rego A et al (2012) Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS ONE 7:e48571. doi:10.1371/journal.pone.0048571

    Article  CAS  Google Scholar 

  • Rizzuto R et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  Google Scholar 

  • Rodriguez-Lafrasse C, Alphonse G, Broquet P, Aloy MT, Louisot P, Rousson R (2001) Temporal relationships between ceramide production, caspase activation and mitochondrial dysfunction in cell lines with varying sensitivity to anti-Fas-induced apoptosis. Biochem J 357:407–416

    Article  CAS  Google Scholar 

  • Rogasevskaia T, Coorssen JR (2006) Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci 119:2688–2694. doi:10.1242/jcs.03007

    Article  CAS  Google Scholar 

  • Rojas-Charry L, Cookson MR, Nino A, Arboleda H, Arboleda G (2014) Downregulation of Pink1 influences mitochondrial fusion-fission machinery and sensitizes to neurotoxins in dopaminergic cells. Neurotoxicology 44C:140–148. doi:10.1016/j.neuro.2014.04.007

    Article  CAS  Google Scholar 

  • Russo SB, Ross JS, Cowart LA (2013) Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol :373–401 doi:10.1007/978-3-7091-1511-4_19.

  • Samanta S, Stiban J, Maugel TK, Colombini M (2011) Visualization of ceramide channels by transmission electron microscopy. Biochim Biophys Acta 1808:1196–1201. doi:10.1016/j.bbamem.2011.01.007

    Article  CAS  Google Scholar 

  • Sawada M et al (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 7:761–772. doi:10.1038/sj.cdd.4400711

    Article  CAS  Google Scholar 

  • Schneider-Brachert W et al (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428. doi:10.1016/j.immuni.2004.08.017 S1074761304002341

    Article  CAS  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  CAS  Google Scholar 

  • Senkal CE, Ponnusamy S, Bielawski J, Hannun YA, Ogretmen B (2010) Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J: Off Publ Fed Am Soc Exp Biol 24:296–308. doi:10.1096/fj.09-135087

    Article  CAS  Google Scholar 

  • Senkal CE et al (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286:42446–42458. doi:10.1074/jbc.M111.287383

    Article  CAS  Google Scholar 

  • Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9:662–673

    Article  CAS  Google Scholar 

  • Silva LC et al (2012) Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 53:430–436. doi:10.1194/jlr.M022715

    Article  CAS  Google Scholar 

  • Siow DL, Anderson CD, Berdyshev EV, Skobeleva A, Natarajan V, Pitson SM, Wattenberg BW (2011) Sphingosine kinase localization in the control of sphingolipid metabolism. Adv Enzym Regul 51:229–244. doi:10.1016/j.advenzreg.2010.09.004

    Article  CAS  Google Scholar 

  • Siskind LJ (2005) Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 37:143–153. doi:10.1007/s10863-005-6567-7

    Article  CAS  Google Scholar 

  • Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644. doi:10.1074/jbc.C000587200

    Article  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem 277:26796–26803. doi:10.1074/jbc.M200754200

    Article  CAS  Google Scholar 

  • Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M (2003) Enlargement and contracture of C2-ceramide channels. Biophys J 85:1560–1575. doi:10.1016/S0006-3495(03)74588-3

    Article  CAS  Google Scholar 

  • Siskind LJ, Kolesnick RN, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125. doi:10.1016/j.mito.2006.03.002

    Article  CAS  Google Scholar 

  • Siskind LJ et al (2008) Anti-apoptotic Bcl-2 family proteins disassemble ceramide channels. J Biol Chem 283:6622–6630. doi:10.1074/jbc.M706115200

    Article  CAS  Google Scholar 

  • Siskind LJ, Mullen TD, Romero Rosales K, Clarke CJ, Hernandez-Corbacho MJ, Edinger AL, Obeid LM (2010) The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J Biol Chem 285:11818–11826. doi:10.1074/jbc.M109.078121

    Article  CAS  Google Scholar 

  • Smith ME et al (2013) Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J 456:427–439. doi:10.1042/BJ20130807

    Article  CAS  Google Scholar 

  • Snider AJ (2013) Sphingosine kinase and sphingosine-1-phosphate: regulators in autoimmune and inflammatory disease. Int J Clin Rheumatol 8 doi:10.2217/ijr.13.40.

  • Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R. doi:10.1093/glycob/cwl052

    Article  CAS  Google Scholar 

  • Sot J, Aranda FJ, Collado MI, Goni FM, Alonso A (2005) Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 88:3368–3380. doi:10.1529/biophysj.104.057851

    Article  CAS  Google Scholar 

  • Sridevi P, Alexander H, Laviad EL, Pewzner-Jung Y, Hannink M, Futerman AH, Alexander S (2009) Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim Biophys Acta 1793:1218–1227. doi:10.1016/j.bbamcr.2009.04.006

    Article  CAS  Google Scholar 

  • Sridevi P et al (2010) Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Exp Cell Res 316:78–91. doi:10.1016/j.yexcr.2009.09.027

    Article  CAS  Google Scholar 

  • Stevenson CE, Takabe K, Nagahashi M, Milstien S, Spiegel S (2011) Targeting sphingosine-1-phosphate in hematologic malignancies. Anti Cancer Agents Med Chem 11:794–798

    Article  CAS  Google Scholar 

  • Stiban J, Caputo L, Colombini M (2008) Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J Lipid Res 49:625–634. doi:10.1194/jlr. M700480-JLR200

    Article  CAS  Google Scholar 

  • Stoica BA, Movsesyan VA, Lea PM 4th, Faden AI (2003) Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 22:365–382

    Article  CAS  Google Scholar 

  • Strub GM et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J : Off Publ Fed Am Soc Exp Biol 25:600–612. doi:10.1096/fj.10-167502

    Article  CAS  Google Scholar 

  • Sun W et al (2010) Substrate specificity, membrane topology, and activity regulation of human alkaline ceramidase 2 (ACER2). J Biol Chem 285:8995–9007. doi:10.1074/jbc.M109.069203

    Article  CAS  Google Scholar 

  • Tafesse FG et al (2014) Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J Cell Sci 127:445–454. doi:10.1242/jcs.138933

    Article  CAS  Google Scholar 

  • Takabe K, Spiegel S (2014) Export of sphingosine-1-phosphate and cancer progression. J Lipid Res 55:1839–1846. doi:10.1194/jlr.R046656

    Article  CAS  Google Scholar 

  • Tani M, Okino N, Mitsutake S, Tanigawa T, Izu H, Ito M (2000) Purification and characterization of a neutral ceramidase from mouse liver. A single protein catalyzes the reversible reaction in which ceramide is both hydrolyzed and synthesized. J Biol Chem 275:3462–3468

    Article  CAS  Google Scholar 

  • Tani M, Igarashi Y, Ito M (2005) Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu. J Biol Chem 280:36592–36600. doi:10.1074/jbc.M506827200

    Article  CAS  Google Scholar 

  • Thomas RL Jr, Matsko CM, Lotze MT, Amoscato AA (1999) Mass spectrometric identification of increased C16 ceramide levels during apoptosis. J Biol Chem 274:30580–30588

    Article  CAS  Google Scholar 

  • Uchida Y et al (2010) Hydrolytic pathway protects against ceramide-induced apoptosis in keratinocytes exposed to UVB. J Investig Dermatol 130:2472–2480. doi:10.1038/jid.2010.153

    Article  CAS  Google Scholar 

  • van Echten-Deckert G, Walter J (2012) Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res 51:378–393. doi:10.1016/j.plipres.2012.07.001

    Article  CAS  Google Scholar 

  • Vit JP, Rosselli F (2003) Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene 22:8645–8652. doi:10.1038/sj.onc.1207087

    Article  CAS  Google Scholar 

  • von Haefen C, Wieder T, Gillissen B, Starck L, Graupner V, Dorken B, Daniel PT (2002) Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene 21:4009–4019. doi:10.1038/sj.onc.1205497

    Article  CAS  Google Scholar 

  • Wang X et al (2009) Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J Cell Biol 184:143–158. doi:10.1083/jcb.200807176

    Article  CAS  Google Scholar 

  • Wattenberg BW (2010) Role of sphingosine kinase localization in sphingolipid signaling. World J Biol Chem 1:362–368. doi:10.4331/wjbc.v1.i12.362

    Article  Google Scholar 

  • Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  Google Scholar 

  • Weigert A, Cremer S, Schmidt MV, von Knethen A, Angioni C, Geisslinger G, Brune B (2010) Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood 115:3531–3540. doi:10.1182/blood-2009-10-243444

    Article  CAS  Google Scholar 

  • Wiesner DA, Dawson G (1996) Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J Neurochem 66:1418–1425

    Article  CAS  Google Scholar 

  • Wiesner DA, Kilkus JP, Gottschalk AR, Quintans J, Dawson G (1997) Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J Biol Chem 272:9868–9876

    Article  CAS  Google Scholar 

  • Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292

    Article  CAS  Google Scholar 

  • Wu BX, Rajagopalan V, Roddy PL, Clarke CJ, Hannun YA (2010) Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J Biol Chem 285:17993–18002. doi:10.1074/jbc.M110.102988

    Article  CAS  Google Scholar 

  • Yamaguchi K et al (2005) Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem J 390:85–93. doi:10.1042/BJ20050017

    Article  CAS  Google Scholar 

  • Yang Y, Uhlig S (2011) The role of sphingolipids in respiratory disease. Ther Adv Respir Dis 5:325–344. doi:10.1177/1753465811406772

    Article  CAS  Google Scholar 

  • Yao J et al (2013) Ultraviolet (UV) and hydrogen peroxide activate ceramide-ER stress-AMPK signaling axis to promote retinal pigment epithelium (RPE) cell apoptosis. Int J Mol Sci 14:10355–10368. doi:10.3390/ijms140510355

    Article  CAS  Google Scholar 

  • Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A 93:5325–5328

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Y, Wan Z, Liu S, Cao Y, Zeng Z (2014) Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS ONE 9:e90362. doi:10.1371/journal.pone.0090362

    Article  CAS  Google Scholar 

  • Zigdon H et al (2013) Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem 288:4947–4956. doi:10.1074/jbc.M112.402719

    Article  CAS  Google Scholar 

  • Zong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah J. Siskind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patwardhan, G.A., Beverly, L.J. & Siskind, L.J. Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr 48, 153–168 (2016). https://doi.org/10.1007/s10863-015-9602-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9602-3

Keywords

Navigation