Skip to main content

Advertisement

Log in

High pressure 31P NMR spectroscopy on guanine nucleotides

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GMP:

Guanosine-5′-mono-phosphate

GDP:

Guanosine-5′-di-phosphate

GTP:

Guanosine-5′-tri-phosphate

GTPγS:

Guanosine-5′-O-(γ-thio)triphosphate)

GppNHp:

Guanosine-5′-(β,γ-imido)triphosphate

GppCH2p:

Guanosine-5′-(β,γ-methylene)triphosphate

Ras:

Protein product of the proto-oncogen rat sarcoma

References

  • Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835

    Article  Google Scholar 

  • Beck Erlach M, Munte CE, Kremer W, Hartl R, Rochelt D, Niesner D, Kalbitzer HR (2010) Ceramic cells for high pressure NMR spectroscopy of proteins. J Magn Reson 204:196–199

    Article  ADS  Google Scholar 

  • Cozzone P, Jardetzky 0 (1976) Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 1. Chemical shifts. BioChemistry 15:4853–4859

    Article  Google Scholar 

  • Cromm PM, Spiegel J, Grossmann TN, Waldmann H (2015) Direct modulation of small GTPase activity and function. Angew Chem Int Ed 54:13516–13537

    Article  Google Scholar 

  • Fenwick RB, Prasannan S, Campbell LJ, Nietlispach D, Evetts KA, Camonis J, Mott HR, Owen D (2009) Solution structure and dynamics of the small GTPase RalB in its active conformation: significance for effector protein binding. BioChemistry 48:2192–2206

    Article  Google Scholar 

  • Fenwick RB, Campbell LJ, Rajasekar K, Prasannan S, Nietlispach D, Camonis J, Owen D, Mott HR (2010) The RalB-RLIP76 complex reveals a novel mode of ral-effector interaction. Structure 18:985–995

    Article  Google Scholar 

  • Frach R, Kibies P, Böttcher S, Pongratz T, Strohfeldt S, Kurrmann S, Koehler J, Hofmann M, Kremer W, Kalbitzer HR, Reiser O, Horinek D, Kast SM (2016a) The chemical shift baseline for high-pressure NMR spectroscopy of proteins. Angew Chemie Int Ed 55, 8757–8760

  • Frach R, Kibies P, Böttcher S, Pongratz T, Strohfeldt S, Kurrmann S, Koehler J, Hofmann M, Kremer W, Kalbitzer HR, Reiser O, Horinek D, Kast SM (2016b) The chemical shift baseline for high-pressure NMR spectroscopy of proteins. Angew Chemie 128, 8900–8904

  • Freund J (1994) Biophysikalische und proteolytische Charakterisierung des HIV-Proteins Nef und Zuordnung der kernmagnetischen Resonanzen eines Fusionsproteins aus Tendamistat und HIV-1-Tat. Dissertation, University of Tübingen, Germany

  • Geyer M, Schweins T, Herrmann C, Prisner T, Wittinghofer A, Kalbitzer HR (1996) Conformational transitions in p21ras and its complexes with the effector protein raf-RBD and the GTPase activating protein GAP. BioChemistry 35:10308–10320

    Article  Google Scholar 

  • Geyer M, Assheuer R, Klebe C, Kuhlmann J, Becker J, Wittinghofer A, Kalbitzer HR (1999) Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1. BioChemistry 38:11250–11260

    Article  Google Scholar 

  • Hausser KH, Kalbitzer HR (1991) NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer, Heidelberg

    Google Scholar 

  • Higashijima T, Graziano MP, Suga H, Kainosho M, Gilman AG (1991) 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F. J Biol Chem 266:3396–3401

    Google Scholar 

  • Kalbitzer HR, Spoerner M, Ganser P, Hozsa C, Kremer W (2009) A fundamental link between folding states and functional states of proteins. J Am Chem Soc 131:16714–16719

    Article  Google Scholar 

  • Kalbitzer HR, Rosnizeck IC, Munte CE, Sunilkumar PN, Kropf V, Spoerner M (2013) Intrinsic allosteric inhibition of signaling proteins by targeting rare interaction states detected by high pressure NMR spectroscopy. Angew Chem Int Ed 52:14242–14246

    Article  Google Scholar 

  • Kremer W, Steiner G, Béraud-Dufour S, Kalbitzer HR (2004) Conformational states of the small G protein Arf-1 in complex with the guanine nucleotide exchange factor ARNO-Sec7. J Biol Chem 279:17004–17012

    Article  Google Scholar 

  • Le Châtelier H, Boudouard O (1898) Limits of flammability of gaseous mixtures. Bulletin de la Société Chimique de France (Paris) 19:483–488

    Google Scholar 

  • Liao J, Shima F, Araki M, Ye M, Muraoka S, Sugimoto T, Kawamura M, Yamamoto N, Tamura A, Kataoka T (2008) Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Biochem Biophys Res Commun 369:327–332

    Article  Google Scholar 

  • Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J (2016) Ras Conformational ensembles, allostery, and signaling. Chem Rev 8:6607–6665

    Article  Google Scholar 

  • Luong TQ, Kapoor S, Winter R (2015) Pressure-A gateway to fundamental insights into protein solvation, dynamics, and function. ChemPhysChem 16:3555–3571

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. Pure Appl Chem 70:117–142

    Article  Google Scholar 

  • Maurer T, Kalbitzer HR (1996) Indirect referencing of 31P and 19F NMR Spectra. J Magn Reson B 113:177–178

    Article  Google Scholar 

  • Meierhofer T, Eberhardt M, Spoerner M (2011a) Conformational states of the ADP ribosylation factor 1 complexed with different guanosine-triphosphates as studied by 31P NMR spectroscopy. BioChemistry 50:6316–6327

  • Meierhofer T, Rosnizeck IC, Graf T, Reiss K, König B, Kalbitzer HR, Spoerner M (2011b) Cu2+-cyclen as probe to identify conformational states in guanine nucleotide binding proteins. J Am Chem Soc 133:2048–2051

  • Miertzschke M, Koerner C, Spoerner M, Wittinghofer A (2014) Structural insights into the small G protein Arl13B and implications for Joubert Syndrome. Biochem J 457:301–311

    Article  Google Scholar 

  • Moedritzer K (1967) pH Dependence of phosphorus-31 chemical shifts and coupling constants of some oxyacids of phosphorus. Inorg Chem 6:936–939

    Article  Google Scholar 

  • Nakano A, Miyazawa T, Nakamura S, Kaziro Y (1980) 31P NMR study of the guanine nucleotide binding of elongation factor Tu from Thermus thermophiles. FEBS Lett 116:72–74

    Article  Google Scholar 

  • Phillips MJ, Calero G, Chan B, Ramachandran S, Cerione RA (2008) Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42. J Biol Chem 283:14153–14164

    Article  Google Scholar 

  • Raiford DS, Fisk CG, Becker ED (1979) Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal Chem 51:2050–2051

    Article  Google Scholar 

  • Rohrer M, Prisner TF, Brügmann O, Käss H, Spoerner M, Wittinghofer A, Kalbitzer HR (2001) Structure of the metal-water complex in Ras·GDP studied by high-field EPR spectroscopy and 31P NMR spectroscopy. BioChemistry 40:1884–1889

    Article  Google Scholar 

  • Rösch P, Kalbitzer HR, Goody R (1980) 31P NMR spectra of thiophosphate analogues of guanosine nucleotides. FEBS Lett 121:2011–2214

    Article  Google Scholar 

  • Rosnizeck IC, Graf T, Spoerner M, Tränkle J, Filchtinski D, Herrmann C, Gremer L, Vetter IR, Wittinghofer A, König B, Kalbitzer HR (2010) Stabilizing a weak binding state for effectors in the human Ras-protein by small compounds. Angew Chem Int Ed 49:3830–3833

    Article  Google Scholar 

  • Rosnizeck IC, Spoerner M, Harsch T, Kreitner S, Filchtinski D, Herrmann C, Engel D, König B, Kalbitzer HR (2012) Metal BPA complexes as state 1(T) inhibitors of activated Ras protein. Angew Chem Int Ed 51:10647–10651

    Article  Google Scholar 

  • Rosnizeck IC, Filchtinski D, Lopes RP, Kieninger B, Herrmann C, Kalbitzer HR, Spoerner M (2014) Elucidating the mode of action of a typical Ras state 1(T) inhibitor. BioChemistry 53:3867–3878

    Article  Google Scholar 

  • Shaka AJ, Baker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    ADS  Google Scholar 

  • Shima F, Ijiri Y, Muraoka S, Liao J, Ye M, Araki M, Matsumoto K, Yamamoto N, Sugimoto T, Yoshikawa Y, Kumasaka T, Yamamoto M, Tamura A, Kataoka T (2010) Structural basis for conformational dynamics of GTP-bound Ras protein. J Biol Chem 285:22696–22705

    Article  Google Scholar 

  • Spoerner M, Wittinghofer A, Kalbitzer HR (2004) Perturbation of the conformational equilibria of Ras by selective mutations as studied by 31P NMR spectroscopy. FEBS Lett 578:305–310

    Article  Google Scholar 

  • Spoerner M, Nuehs A, Ganser P, Herrmann C, Wittinghofer A, Kalbitzer HR (2005a) Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. BioChemistry 44:2225–2236

  • Spoerner M, Graf, T, König B, Kalbitzer HR (2005b) A novel mechanism for the modulation of the Ras-effector interaction by small molecules. Biochem Biophys Res Commun 334:709–713

  • Spoerner M, Nuehs A, Herrmann C, Steiner G, Kalbitzer HR (2007) Slow conformational dynamics of the guanine nucleotide binding protein Ras complexed with the GTP analogue GTPγS. FEBS J 274:1419–1433

    Article  Google Scholar 

  • Spoerner M, Hozsa C, Poetzl J, Reiss K, Ganser P, Geyer M, Kalbitzer HR (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285:39768–39778

    Article  Google Scholar 

  • Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo APU, DeMarco R (2014) Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 289:7799–7811

    Article  Google Scholar 

  • Zhao J, Cheng Y, Wang Z, Wang J (2002) Probing the binding states of GDP to Cdc42 using urea interaction. Biochem Biophys Res Commun 291:1276–1282

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (FOR1979), the Human Frontiers Science Program Organisation (HFSPO) and the Bayerische Forschungsstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Robert Kalbitzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 232 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spoerner, M., Karl, M., Lopes, P. et al. High pressure 31P NMR spectroscopy on guanine nucleotides. J Biomol NMR 67, 1–13 (2017). https://doi.org/10.1007/s10858-016-0079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0079-0

Keywords

Navigation