Skip to main content
Log in

Converging nuclear magnetic shielding calculations with respect to basis and system size in protein systems

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Ab initio chemical shielding calculations greatly facilitate the interpretation of nuclear magnetic resonance (NMR) chemical shifts in biological systems, but the large sizes of these systems requires approximations in the chemical models used to represent them. Achieving good convergence in the predicted chemical shieldings is necessary before one can unravel how other complex structural and dynamical factors affect the NMR measurements. Here, we investigate how to balance trade-offs between using a better basis set or a larger cluster model for predicting the chemical shieldings of the substrates in two representative examples of protein-substrate systems involving different domains in tryptophan synthase: the N-(4′-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F9) ligand which binds in the \(\alpha \) active site, and the 2-aminophenol quinonoid intermediate formed in the \(\beta \) active site. We first demonstrate that a chemically intuitive three-layer, locally dense basis model that uses a large basis on the substrate, a medium triple-zeta basis to describe its hydrogen-bonding partners and/or surrounding van der Waals cavity, and a crude basis set for more distant atoms provides chemical shieldings in good agreement with much more expensive large basis calculations. Second, long-range quantum mechanical interactions are important, and one can accurately estimate them as a small-basis correction to larger-basis calculations on a smaller cluster. The combination of these approaches enables one to perform density functional theory NMR chemical shift calculations in protein systems that are well-converged with respect to both basis set and cluster size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An L, Wang Y, Zhang N, Yan S, Bax A, Yao L (2014) Protein apparent dielectric constant and its temperature dependence from remote chemical shift effects. J Am Chem Soc 136(37):12816–12819

    Article  Google Scholar 

  • Auer AA (2009) Quantitative prediction of gas-phase 17O nuclear magnetic shielding constants. J Chem Phys 131(2):024116

    Article  ADS  Google Scholar 

  • Beer M, Kussmann J, Ochsenfeld C (2011) Nuclei-selected NMR shielding calculations: a sublinear-scaling quantum-chemical method. J Chem Phys 134(7):074102

    Article  ADS  Google Scholar 

  • Blanco F, Alkorta I, Elguero J (2007) Statistical analysis of \(^{13}\text{C}\) and \(^{15}\text{N}\) NMR chemical shifts from GIAO/B3LYP/6-311++G** calculated absolute shieldings. Magn Reson Chem 45:797–800

    Article  Google Scholar 

  • Brouwer DH, Darton RJ, Morris RE, Levitt MH (2005) A solid-state NMR method for solution of zeolite crystal structures. J Am Chem Soc 127(127):10365–10370

    Article  Google Scholar 

  • Caulkins BG, Bastin B, Yang C, Neubauer TJ, Young RP, Hilario E, Huang Y-MM, Chang C-EA, Fan L, Dunn MF, Marsella MJ, Mueller LJ (2014a) Protonation states of the tryptophan synthase internal aldimine active site from solid-state NMR spectroscopy: direct observation of the protonated schiff base linkage to pyridoxal-5-phosphate. J Am Chem Soc 136:12824–12827

    Article  Google Scholar 

  • Caulkins BG, Yang C, Hilario E, Fan L, Dunn MF, Mueller LJ (2014b) Catalytic roles of βLys87 in tryptophan synthase: 15N solid state NMR studies. Biochim Biophys Acta. doi:10.1016/j.bbapap.2015.02.003

  • Chesnut DB, Moore KD (1989) Locally dense basis sets for chemical shift calculations. J Comput Chem 10(5):648–659

    Article  Google Scholar 

  • Chesnut DB, Rusiloski BE, Moore KD, Egolfs DA (1993) Use of locally dense basis sets for nuclear magnetic resonance shielding calculations. J Comp Chem 14(11):1364–1375

    Article  Google Scholar 

  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III.* The 3-21+G basis set for first-row elements Li–F. J Comp Chem 4:294–301

    Article  Google Scholar 

  • Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I (2008) Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem Sci 33:254–264

    Article  Google Scholar 

  • Facelli JC, Grant DM (1993) Determination of molecular symmetry in crystalline naphthalene using solid-state NMR. Nature 365:325–327

    Article  ADS  Google Scholar 

  • Flaig D, Beer M, Ochsenfeld C (2012) Convergence of electronic structure with the size of the QM region: example of QM/MM NMR shieldings. J Chem Theory Comput 8(7):2260–2271

    Article  Google Scholar 

  • Flaig D, Maurer M, Hanni M, Braunger K, Kick L, Thubauville M, Ochsenfeld C (2014) Benchmarking hydrogen and carbon NMR chemical shifts at HF, DFT, and MP2 levels. J Chem Theory Comput 10(2):572–578

    Article  Google Scholar 

  • Frank A, Onila I, Möller HM, Exner TE (2011) Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins. Proteins 79(7):2189–202

    Article  Google Scholar 

  • Frank A, Moller HM, Exner TE (2012) Toward the quantum chemical calculation of NMR chemical shifts of proteins. 2. Level of theory, basis set, and solvents model dependence. J Chem Theory Comput 8(4):1480–1492

    Article  Google Scholar 

  • Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  ADS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas X, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  • Gao J (1995) Methods and applications of combined quantum mechanical and molecular mechanical potentials. Rev Comput Chem 7:119–185

    Google Scholar 

  • Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S (2014) Octahedral point-charge model and its application to fragment molecular orbital calculations of chemical shifts. Chem Phys Lett 593:165–173

    Article  ADS  Google Scholar 

  • Gupta R, Hou G, Renirie R, Wever R, Polenova T (2015) 51 V NMR crystallography of vanadium chloroperoxidase and its directed evolution P395D/L241V/T343A mutant: protonation environments of the active site. J Am Chem Soc 137:5618–5628

    Article  Google Scholar 

  • Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  Google Scholar 

  • Harper JK, Grant DM, Zhang Y, Lee PL, Von Dreele R (2006) Characterizing challenging microcrystalline solids with solid-state NMR shift tensor and synchrotron X-ray powder diffraction data: structural analysis of ambuic acid. J Am Chem Soc 128(5):1547–1552

    Article  Google Scholar 

  • Harris RK, Joyce SA, Pickard CJ, Cadars S, Emsley L (2006) Assigning carbon-13 NMR spectra to crystal structures by the INADEQUATE pulse sequence and first principles computation: a case study of two forms of testosterone. Phys Chem Chem Phys 8(1):137–143

    Article  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  ADS  Google Scholar 

  • Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C (2014) Density functional investigation of intermolecular effects on \(^{13}\text{C}\) NMR chemical-shielding tensors modeled with molecular clusters. J Chem Phys 141(16):164121

    Article  ADS  Google Scholar 

  • Jain R, Bally T, Rablen PR (2009) Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J Org Chem 74(11):4017–4023

    Article  Google Scholar 

  • Johnson ER, DiLabio GA (2009) Convergence of calculated nuclear magnetic resonance chemical shifts in a protein with respect to quantum mechanical model size. J Mol Struct (THEOCHEM) 898(1–3):56–61

    Article  Google Scholar 

  • Keal TW, Tozer DJ (2004) A semiempirical generalized gradient approximation exchange-correlation functional. J Chem Phys 121(12):5654–5660

    Article  ADS  Google Scholar 

  • Konstantinov IA, Broadbelt LJ (2011) Regression formulas for density functional theory calculated \(^1\text{H}\) and \(^{13}\text{C}\) NMR chemical shifts in toluene-\(d_8\). J Phys Chem A 115(44):12364–12372

    Article  Google Scholar 

  • Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  ADS  Google Scholar 

  • Kukic P, Farrell D, McIntosh LP, García-Moreno EB, Jensen KS, Toleikis Z, Teilum K, Nielsen JE (2013) Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 135(45):16968–16976

    Article  Google Scholar 

  • Kupka T, Stachów M, Nieradka M, Kaminsky J, Pluta T (2010) Convergence of nuclear magnetic shieldings in the Kohn–Sham limit for several small molecules. J Chem Theory Comput 6:1580–1589

    Article  Google Scholar 

  • Kussmann J, Ochsenfeld C (2007) Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. J Chem Phys 127(5):054103

    Article  ADS  Google Scholar 

  • Kussmann J, Beer M, Ochsenfeld C (2013) Linear-scaling self-consistent field methods for large molecules. WIRES Comput Mol Sci 3:614–636

    Article  Google Scholar 

  • Lai J, Niks D, Wang Y, Domratcheva T, Barends TRM, Schwarz F, Olsen RA, Elliott DW, Fatmi MQ, Chang C-EA, Schlichting I, Dunn MF, Mueller LJ (2011) X-ray and NMR crystallography in an enzyme active site: the indoline quinonoid intermediate in tryptophan synthase. J Am Chem Soc 133(1):4–7

    Article  Google Scholar 

  • Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “Constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136

    Article  Google Scholar 

  • Lin H, Truhlar DG (2006) QM/MM: What have we learned, where are we, and where do we go from here? Theor Chem Acc 117(2):185–199

    Article  Google Scholar 

  • Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of \(^{1}\text{H}\) and \(^{13}\text{C}\) chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112(3):1839–1862

    Article  Google Scholar 

  • Luchinat C, Parigi G, Ravera E, Rinaldelli M (2012) Solid-state NMR crystallography through paramagnetic restraints. J Am Chem Soc 134(11):5006–5009

    Article  Google Scholar 

  • McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  ADS  Google Scholar 

  • Moon S, Case DA (2006) A comparison of quantum chemical models for calculating NMR shielding parameters in peptides: mixed basis set and ONIOM methods combined with a complete basis set extrapolation. J Comp Chem 27(7):825–836

    Article  Google Scholar 

  • Mueller LJ, Dunn MF (2013) NMR crystallography of enzyme active sites: probing chemically detailed, three-dimensional structure in tryptophan synthase. Acc Chem Res 46(9):2008–2017

  • Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF (2013) Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. Biochemistry 52(37):6396–411

    Article  Google Scholar 

  • Ochsenfeld C, Kussmann J, Koziol F (2004) Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. Angew Chem Int Ed 43:4485–4489

    Article  Google Scholar 

  • Olsen RA, Struppe J, Elliott DW, Thomas RJ, Mueller LJ (2003) Through-bond \(^{13}\text{C}-^{13}\text{C}\) correlation at the natural abundance level: refining dynamic regions in the crystal structure of vitamin-D\(_3\) with solid-state NMR. J Am Chem Soc 125:11784–11785

    Article  Google Scholar 

  • Pooransign-Margolis N, Renirie R, Hasan Z, Wever R, Vega AJ, Polenova T (2006) \(^{51}\text{V}\) solid state magic angle spinning NMR spectroscopy of vanadium chloroperoxidase. J Am Chem Soc 128:5190–5208

    Article  Google Scholar 

  • Rajeswaran M, Blanton TN, Zumbulyadis N, Giesen DJ, Conesa-moratilla C, Misture ST, Stephens PW, Huq A (2002) Three-dimensional structure determination of N-(\(p\)-tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy. J Am Chem Soc 124(2):14450–14459

    Article  Google Scholar 

  • Reid DM, Kobayashi R, Collins MA (2014) Systematic study of locally dense basis sets for NMR shielding constants. J Chem Theory Comput 10(1):146–152

    Article  Google Scholar 

  • Salager E, Day GM, Stein RS, Pickard CJ, Elena B, Emsley L (2010) Powder crystallography by combined crystal structure prediction and high-resolution \(^1n{H}\) solid-state NMR spectroscopy. J Am Chem Soc 132:2564–2566

    Article  Google Scholar 

  • Samultsev DO, Semenov VA, Krivdin LB (2014) On the accuracy of the GIAO-DFT calculation of \(^{15}\text{N}\) NMR chemical shifts of the nitrogen-containing heterocycles–a gateway to better agreement with experiment at lower computational cost. Magn Reson Chem 52(5):222–230

    Article  Google Scholar 

  • Schutz CN, Warshel A (2001) What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins 44(4):400–417

    Article  Google Scholar 

  • Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48(7):1198–1229

    Article  Google Scholar 

  • Steinmann C, Olsen JMH, Kongsted J (2014) Nuclear magnetic shielding constants from quantum mechanical/molecular mechanical calculations using polarizable embedding: role of the embedding potential. J Chem Theory Comput 10(3):981–988

    Article  Google Scholar 

  • Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  Google Scholar 

  • Sumner S, Soderhjelm P, Ryde U (2013) Effect of geometry optimizations on QM-cluster and QM/MM studies of reaction energies in proteins. J Chem Theory Comput 9:4205–4214

    Article  Google Scholar 

  • Svensson M, Humbel S, Froese RD, Matasubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayer integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)(3))(2)+H-2 oxidative addition. J Phys Chem 100:19357–19363

    Article  Google Scholar 

  • Tan H-J, Bettens RPA (2013) Ab initio NMR chemical-shift calculations based on the combined fragmentation method. Phys Chem Chem Phys 15(20):7541–7547

    Article  Google Scholar 

  • Teale AM, Lutnaes OB, Helgaker T, Tozer DJ, Gauss J (2013) Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations. J Chem Phys 138(2):024111

    Article  ADS  Google Scholar 

  • Webber AL, Emsley L, Claramunt RM, Brown SP (2010) NMR crystallography of campho pyrazole (Z) 6): combining high-resolution H-13 C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations. J Phys Chem A 114:10435–10442

    Article  Google Scholar 

  • Zhang Y, Wu A, Xu X, Yan Y (2006) OPBE: a promising density functional for the calculation of nuclear shielding constants. Chem Phys Lett 421:383–388

    Article  ADS  Google Scholar 

  • Zheng A, Yang M, Yue Y, Ye C, Deng F (2004) \(^{13}\text{C}\) NMR shielding tensors of carboxyl carbon in amino acids calculated by ONIOM method. Chem Phys Lett 399(1–3):172–176

    Article  ADS  Google Scholar 

  • Zhu T, He X, Zhang JZH (2012) Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Phys Chem Chem Phys 14(21):7837–7845

    Article  Google Scholar 

  • Zhu T, Zhang JZH, He X (2013) Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model. J Chem Theory Comput 9(4):2104–2114

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work from National Science Foundation Grant CHE-1362465 (J.H. and G.B.), National Institutes of Health Grant R01GM097569 (T.N., B.C. and L.M.) and supercomputer time from XSEDE Grant TG-CHE110064 (J.H. and G.B.) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. O. Beran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartman, J.D., Neubauer, T.J., Caulkins, B.G. et al. Converging nuclear magnetic shielding calculations with respect to basis and system size in protein systems. J Biomol NMR 62, 327–340 (2015). https://doi.org/10.1007/s10858-015-9947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9947-2

Keywords

Navigation