Skip to main content

Advertisement

Log in

A chemical approach for site-specific identification of NMR signals from protein side-chain NH3 + groups forming intermolecular ion pairs in protein–nucleic acid complexes

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH3 + groups forming the intermolecular ion pairs. A characteristic change in their 1H and 15N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain 15N and DNA phosphorodithiaote 31P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson KM, Esadze A, Manoharan M, Bruschweiler R, Gorenstein DG, Iwahara J (2013) Direct observation of the ion-pair dynamics at a protein–DNA interface by NMR spectroscopy. J Am Chem Soc 135:3613–3619. doi:10.1021/ja312314b

    Article  Google Scholar 

  • Andre I, Linse S, Mulder FA (2007) Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. J Am Chem Soc 129:15805–15813. doi:10.1021/ja0721824

    Article  Google Scholar 

  • Esadze A, Li DW, Wang T, Brüschweiler R, Iwahara J (2011) Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H–15N NMR spectroscopy. J Am Chem Soc 133:909–919. doi:10.1021/ja107847d

    Article  Google Scholar 

  • Esadze A, Zandarashvili L, Iwahara J (2014) Effective strategy to assign 1H–15N heteronuclear correlation NMR signals from lysine side-chain NH3 + groups of proteins at low temperature. J Biomol NMR 60:23–27. doi:10.1007/s10858-014-9854-y

    Article  Google Scholar 

  • Farschtschi N, Gorenstein DG (1988) Preparation of a deoxynucleoside thiophosphoramidite intermediate in the synthesis of nucleoside phosphorodithioates. Tetrahedron Lett 29:6843–6846. doi:10.1016/S0040-4039(00)88455-5

    Article  Google Scholar 

  • Fraenkel E, Pabo CO (1998) Comparison of X-ray and NMR structures for the Antennapedia homeodomain–DNA complex. Nat Struct Biol 5:692–697. doi:10.1038/1388

    Article  Google Scholar 

  • Frederiksen JK, Piccirilli JA (2009) Separation of RNA phosphorothioate oligonucleotides by HPLC. Methods Enzymol 468:289–309. doi:10.1016/S0076-6879(09)68014-9

    Article  Google Scholar 

  • Gorenstein DG (1992) 31P NMR of DNA. Methods Enzymol 211:254–286

    Article  Google Scholar 

  • Gorenstein DG (1994) Conformation and dynamics of DNA and protein–DNA complexes by 31P NMR. Chem Rev 94:1315–1338

    Article  Google Scholar 

  • Iwahara J, Zweckstetter M, Clore GM (2006) NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc Natl Acad Sci USA 103:15062–15067

    Article  ADS  Google Scholar 

  • Iwahara J, Jung YS, Clore GM (2007) Heteronuclear NMR spectroscopy for lysine NH3 groups in proteins: unique effect of water exchange on 15N transverse relaxation. J Am Chem Soc 129:2971–2980

    Article  Google Scholar 

  • Marshall WS, Caruthers MH (1993) Phosphorodithioate DNA as a potential therapeutic drug. Science 259:1564–1570

    Article  ADS  Google Scholar 

  • Marshall WS, Beaton G, Stein CA, Matsukura M, Caruthers MH (1992) Inhibition of human immunodeficiency virus activity by phosphorodithioate oligodeoxycytidine. Proc Natl Acad Sci USA 89:6265–6269

    Article  ADS  Google Scholar 

  • Murakami A, Tamura Y, Wada H, Makino K (1994) Separation and characterization of diastereoisomers of antisense oligodeoxyribonucleoside phosphorothioates. Anal Biochem 223:285–290. doi:10.1006/Abio.1994.1586

    Article  Google Scholar 

  • Nielsen J, Brill WKD, Caruthers MH (1988) Synthesis and characterization of dinucleoside phosphorodithioates. Tetrahedron Lett 29:2911–2914. doi:10.1016/0040-4039(88)85045-7

    Article  Google Scholar 

  • Stec WJ, Zon G, Uznanski B (1985) Reversed-phase high-performance liquid-chromatographic separation of diastereomeric phosphorothioate analogs of oligodeoxyribonucleotides and other backbone-modified congeners of DNA. J Chromatogr 326:263–280. doi:10.1016/S0021-9673(01)87452-5

    Article  Google Scholar 

  • Wiesler WT, Marshall WS, Caruthers MH (1993) Synthesis and purification of phosphorodithioate DNA. Methods Mol Biol 20:191–206. doi:10.1385/0-89603-281-7:191

    Google Scholar 

  • Yamazaki T, Pascal SM, Singer AU, Forman-Kay JD, Kay LE (1995) NMR pulse schemes for the sequence-specific assignment of arginine guanidino 15N and 1H chemical shifts in proteins. J Am Chem Soc 117:3556–3564

    Article  Google Scholar 

  • Yang X, Fennewald S, Luxon BA, Aronson J, Herzog NK, Gorenstein DG (1999) Aptamers containing thymidine 3′–O–phosphorodithioates: synthesis and binding to nuclear factor-kappaB. Bioorg Med Chem Lett 9:3357–3362

    Article  Google Scholar 

  • Yang X et al (2002) Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries designed for rapid PCR-based sequencing. Nucleic Acids Res 30:e132

    Article  Google Scholar 

  • Zandarashvili L, Iwahara J (2014) Temperature dependence of internal motions of protein side-chain NH3 + groups: insight into energy barriers for transient breakage of hydrogen bonds. Biochemistry. doi:10.1021/bi5012749

    Google Scholar 

  • Zandarashvili L, Li DW, Wang T, Brüschweiler R, Iwahara J (2011) Signature of mobile hydrogen bonding of lysine side chains from long-range 15N–13C scalar J-couplings and computation. J Am Chem Soc 133:9192–9195. doi:10.1021/ja202219n

    Article  Google Scholar 

  • Zandarashvili L, Vuzman D, Esadze A, Takayama Y, Sahu D, Levy Y, Iwahara J (2012) Asymmetrical roles of zinc fingers in dynamic DNA-scanning process by the inducible transcription factor Egr-1. Proc Natl Acad Sci USA 109:E1724–E1732. doi:10.1073/pnas.1121500109

    Article  ADS  Google Scholar 

  • Zandarashvili L, Esadze A, Iwahara J (2013) NMR studies on the dynamics of hydrogen bonds and ion pairs involving lysine side chains of proteins. Adv Protein Chem Struct Biol 93:37–80. doi:10.1016/B978-0-12-416596-0.00002-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant R01GM105931 from National Institutes of Health and Grant CHE-1307344 form National Science Foundation. We thank Drs. Xianbin Yang and David Volk for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Iwahara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.M., Nguyen, D., Esadze, A. et al. A chemical approach for site-specific identification of NMR signals from protein side-chain NH3 + groups forming intermolecular ion pairs in protein–nucleic acid complexes. J Biomol NMR 62, 1–5 (2015). https://doi.org/10.1007/s10858-015-9909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9909-8

Keywords

Navigation