Skip to main content
Log in

Measurement of rate constants for homodimer subunit exchange using double electron–electron resonance and paramagnetic relaxation enhancements

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron–electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k −1, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein–protein and protein-DNA complex studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aquilina JA, Benesch JLP, Ding LL, Yaron O et al (2005) Subunit exchange of polydisperse proteins. J Biol Chem 280:14485–14491

    Article  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  Google Scholar 

  • Borbat PP, McHaourab HS, Freed JH (2002) Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J Am Chem Soc 124:5304–5314

    Article  Google Scholar 

  • Bova MP, Ding L–L, Horwitz J, Fung BK-K (1997) Subunit Exchange of αA-crystallin. J Biol Chem 272:29511–29517

    Article  Google Scholar 

  • Bova MP, Mchaourab HS, Han Y, Fung BK-K (2000) Subunit exchange of small heat shock proteins. J Biol Chem 275:1035–1042

    Article  Google Scholar 

  • Cai SJ, Inouye M (2003) Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of E. coli histidine kinase (EnvZ). J Mol Biol 329:495–503

    Article  Google Scholar 

  • Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616

    Article  Google Scholar 

  • Cooper T, Leifert WR, Glatz RV, McMurchie EJ (2008) Expression and characterisation of functional lanthanide-binding tags fused to a G-protein and muscarinic (M2) receptor. J Bionanosci 2:27–34

    Article  Google Scholar 

  • Darke PL, Jordan SP, Hall DL, Zugay JA et al (1994) Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates. Biochemistry 33:98–105

    Article  Google Scholar 

  • Folmer RH, Hilbers CW, Konings RN, Hallenga K (1995) A (13)C double-filtered NOESY with strongly reduced artefacts and improved sensitivity. J Biomol NMR 5:427–432

    Article  Google Scholar 

  • Gabdoulline RR, Wade RC (2002) Biomolecular diffusional association. Curr Opinion Struct Biol 12:204–213

    Article  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  ADS  Google Scholar 

  • Ghimire H, McCarrick RM, Budil DE, Lorigan GA (2009) Significantly improved sensitivity of Q-band PELDOR/DEER experiments relative to X-band is observed in measuring the intercoil distance of a leucine zipper motif peptide (GCN4-LZ). Biochemistry 48:5782–5784

    Article  Google Scholar 

  • Goodsell DS, Olsen AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153

    Article  Google Scholar 

  • Hilger D, Polyhach Y, Padan E, Jung H et al (2007) High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed electron paramagnetic resonance distance measurements. Biophys J 93:3675–3683

    Article  Google Scholar 

  • Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440:1227–1230

    Article  ADS  Google Scholar 

  • Jeschke G, Abbott RJM, Lea SM, Timmel CR et al (2006a) The characterization of weak protein–protein interactions: evidence from DEER for the trimerization of a von Willebrand factor A domain in solution. Angew Chem Int Ed 45:1058–1061

    Article  Google Scholar 

  • Jeschke G, Chechik V, Ionita P, Godt A et al (2006b) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  Google Scholar 

  • Lee W, Revington MJ, Arrowsmith C, Kay LE (1994) A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett 350:87–90

    Google Scholar 

  • Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265

    Article  ADS  Google Scholar 

  • Liang JJ, Liu B-F (2006) Fluorescence resonance energy transfer study of subunit exchange in human lens crystallins and congenital cataract crystallin mutants. Protein Sci 15:1619–1627

    Article  Google Scholar 

  • Mathhews JM, Sunde M (2012) Dimers, oligomers, everywhere. Adv Exp Med Biol 747:1–18

    Article  Google Scholar 

  • Nooren IM, Thornton JM (2003) Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol 325:991–1018

    Article  Google Scholar 

  • Otting G, Wüthrich K (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(ω1, ω2) double half filter. J Magn Reson 85:586–594

    Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G et al (2000) Dead-time free measurement of dipole–dipole interactions between electron spins. J Magn Reson 142:331–340

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T 2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Polyhach Y, Bordignon E, Tschaggelar R, Gandra S et al (2012) High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys Chem Chem Phys 14:10762–10773

    Article  Google Scholar 

  • Rumpel S, Becker S, Zweckstetter M (2008) High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J Biomol NMR 40:1–13

    Article  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  Google Scholar 

  • Scholosshauer M, Baker D (2004) Realistic protein–protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. Protein Sci 13:1660–1669

    Article  Google Scholar 

  • Shen HB, Chou KC (2009) Quatldent: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information. J Proteome Res 8:1577–1584

    Article  Google Scholar 

  • Smoluchowski MV (1917) Versuch einer mathematischen theorie der koagulationskinetik kolloider loeschungen. Z Phys Chem 92:129–168

    Google Scholar 

  • Sobott F, Benesch JLP, Vierling E, Robinson CV (2002) Subunit exchange of multimeric protein complexes. J Biol Chem 277:38921–38929

    Article  Google Scholar 

  • Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein–protein association. Nature 444:383–386

    Article  ADS  Google Scholar 

  • Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    Article  ADS  Google Scholar 

  • Tang C, Ghirlando R, Clore GM (2008a) Visualization of transient ultra-weak protein self-association in solution using paramagnetic relaxation enhancement. J Am Chem Soc 130:4048–4056

    Article  Google Scholar 

  • Tang C, Louis JM, Aniana A, Suh JY et al (2008b) Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 455:693–696

    Article  ADS  Google Scholar 

  • Uetrecht C, Watts NR, Stahl SJ, Wingfield PT et al (2010) Subunit exchange rates in Hepatitis B virus capsids are geometry- and temperature-dependent. Phys Chem Chem Phys 12:13368–13371

    Article  Google Scholar 

  • Vinogradova O, Qin J (2012) NMR as a unique tool in assessment and complex determination of weak protein–protein interactions. Top Curr Chem 326:35–45

    Article  Google Scholar 

  • Ward R, Bowman A, El-Mkami H, Owen-Hughes T et al (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349

    Article  Google Scholar 

  • Yagi H, Banerjee D, Graham B, Huber T, Goldfarb D et al (2011) Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR. J Am Chem Soc 133:10418–10421

    Article  Google Scholar 

  • Yang Y, Ramelot TA, McCarrick RM, Ni S et al (2010) Combining NMR and EPR methods for homodimer protein structure determination. J Am Chem Soc 132:11910–11913

    Article  Google Scholar 

  • Yang Y, Ramelot TA, Cort JR, Wang H et al (2011) Solution NMR structure of Dsy0195 homodimer from Desulfitobacterium hafniense: first structure representative of the YabP domain family of proteins involved in spore coat assembly. J Struct Funct Genomics 12:175–179

    Article  Google Scholar 

  • Yu D, Volkov AN, Tang C (2009) Characterizing dynamic protein–protein interactions using differentially scaled paramagnetic relaxation enhancement. J Am Chem Soc 131:17291–17297

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of General Medical Sciences; Protein Structure Initiative-Biology Program; Grant Number U54-GM094597. The majority of the data collection was conducted at the Ohio Center of Excellence in Biomedicine in Structural Biology and Metabonomics at Miami University. We acknowledge Gaetano Montelione, John Everett, and the rest of the Protein Production group at Rutgers University for providing the Dsy0195 mutants used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Ramelot, T.A., Ni, S. et al. Measurement of rate constants for homodimer subunit exchange using double electron–electron resonance and paramagnetic relaxation enhancements. J Biomol NMR 55, 47–58 (2013). https://doi.org/10.1007/s10858-012-9685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9685-7

Keywords

Navigation