Skip to main content
Log in

Glucose-installed biodegradable polymeric micelles for cancer-targeted drug delivery system: synthesis, characterization and in vitro evaluation

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glucose metabolism of cancer can be used as a strategy to target cancer cells which exhibit altered glycolytic rate. The facilitated glucose transporter (Glut) plays an important role in enhancement glycolytic rate resulting in increased glucose uptake into cancer cells. 18FGD-PET image is an example for using Glut as a targeting to diagnose the high glycolytic rate of tumor. Thus, Glut may be adapted to target cancer cells for drug delivery system. Herein, biodegradation polymeric micelles target cancer cells by Glut was fabricated. The amphiphilic block copolymer of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) was synthesized where terminal group of the PEG chain was installed with glucose molecules. The 1H-NMR confirmed the existence of glucose moiety from two distinct peaks (5.2 and 4.7 ppm) of protons at anomeric carbon of glucose. Glucose-PEG-b-PCL spontaneously forms micelles in an aqueous solution. The size and zeta potential were 22 nm and -7 mv, respectively. Glucose-micelles have high stability, and no evidence of cytotoxicity was found after incubation for 7 days. Doxorubicin, used as a fluorescent probe, was loaded into glucose-micelles. The enhanced amount of doxorubicin as a result of glucose-micelles in PC-3, MCF-7 and HepG2 was evaluated by fluorescence microscopy and flow cytometer. Glucose molecules on the surface of micelles increased internalization and enhanced uptake of micelles via bypassing endocytosis pathway. These results show the use of glucose as a targeting ligand on the micelle surface to target cancer cells via Glut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: implications for cancer detection, prognosis and treatment. Metabolism 2016;65:124–39.

    Article  CAS  Google Scholar 

  2. Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci. 2013;4:2319–33.

    Article  CAS  Google Scholar 

  3. Yu J-M, Li W-D, Lu L, Zhou X-Y, Wang D-Y, Li H-M, et al. Preparation and characterization of galactosylated glycol chitosan micelles and its potential use for hepatoma-targeting delivery of doxorubicin. J Mater Sci. 2014;25:691–701.

    CAS  Google Scholar 

  4. Xu H, Ma H, Yang P, Zhang X, Wu X, Yin W, et al. Targeted polymer-drug conjugates: current progress and future perspective. Colloids Surf B: Biointerfaces. 2015;136:729–34.

    Article  CAS  Google Scholar 

  5. Bowen ML, Chen Z-F, Roos AM, Misri R, Hafeli U, Adam MJ, et al. Long-chain rhenium and technetium glucosamine conjugates. Dalton Trans. 2009;42:9228–36.

    Article  Google Scholar 

  6. Cao J, Cui S, Li S, Du C, Tian J, Wan S, et al. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex. Cancer Res. 2013;73:1362–73.

    Article  CAS  Google Scholar 

  7. Shan XH, Hu H, Xiong F, Gu N, Geng XD, Zhu W, et al. Targeting Glut1-overexpressing MDA-MB-231 cells with 2-deoxy-d-g1ucose modified SPIOs. Eur J Radiol. 2012;81:95–9.

    Article  Google Scholar 

  8. Jiang X, Xin H, Gu J, Du F, Feng C, Xie Y, et al. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J Pharm Sci. 2014;103:1487–96.

    Article  CAS  Google Scholar 

  9. Venturelli L, Nappini S, Bulfoni M, Gianfranceschi G, Dal Zilio S, Coceano G. Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Scientific Reports. 2016;6:21629.

    Article  Google Scholar 

  10. Niu J, Wang A, Ke Z, Zheng Z. Glucose transporter and folic acid receptor-mediated Pluronic P105 polymeric micelles loaded with doxorubicin for brain tumor treating. J Drug Target. 2014;22:712–23.

    Article  CAS  Google Scholar 

  11. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, et al. Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35:518–29.

    Article  CAS  Google Scholar 

  12. Thasneem YM, Sajeesh S, Sharma CP. Glucosylated polymeric nanoparticles: a sweetened approach against blood compatibility paradox. Colloids Surf B: Biointerfaces. 2013;108:337–44.

    Article  CAS  Google Scholar 

  13. Motiei M, Dreifuss T, Betzer O, Panet H, Popovtzer A, Santana J, et al. Differentiating between cancer and inflammation: a metabolic-based method for functional computed tomography imaging. ACS Nano 2016;10:3469–77.

    Article  CAS  Google Scholar 

  14. Nittayacharn P, Nasongkla N. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. J Mater Sci. 2017;28:101.

    Google Scholar 

  15. Eawsakul K, Chinavinijkul P, Saeeng R, Chairoungdua A, Tuchinda P, Nasongkla N. Preparation and characterizations of RSPP050-loaded polymeric micelles using poly(ethylene glycol)-b-poly(ε-caprolactone) and poly(ethylene glycol)-b-poly(D,L-lactide). Chem Pharm Bull. 2017;65:530–7.

    Article  CAS  Google Scholar 

  16. Tambunlertchai S, Srisang S, Nasongkla N. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles. J Mater Sci. 2017;28:90.

    Google Scholar 

  17. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem. 2004;43:6323–7.

    Article  CAS  Google Scholar 

  18. Puntawee S, Theerasilp M, Reabroi S, Saeeng R, Piyachaturawat P, Chairoungdua A, et al. Solubility enhancement and in vitro evaluation of PEG- b -PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy. Pharm Dev Technol. 2016;21:437–44.

    CAS  Google Scholar 

  19. Theerasilp M, Chalermpanapun P, Ponlamuangdee K, Sukvanitvichai D, Nasongkla N. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Adv. 2017;7:11158–69.

    Article  CAS  Google Scholar 

  20. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotech. 2017;9:e1416.

    Article  Google Scholar 

  21. Nakamura T, Nagasaki Y, Kataoka K. Synthesis of heterobifunctional poly(ethylene glycol) with a reducing monosaccharide residue at one end. Bioconjug Chem. 1998;9:300–3.

    Article  CAS  Google Scholar 

  22. Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles: synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 1999;32:8024–32.

    Article  CAS  Google Scholar 

  23. Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001;2:1067–70.

    Article  CAS  Google Scholar 

  24. Yoon JJ, Nam YS, Kim JH, Park TG. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnol Bioeng. 2002;78:1–10.

    Article  CAS  Google Scholar 

  25. Rieger J, Stoffelbach F, Cui D, Imberty A, Lameignere E, Putaux JL, et al. Mannosylated poly(ethylene oxide)-b-poly(epsilon-caprolactone) diblock copolymers: synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 2007;8:2717–25.

    Article  CAS  Google Scholar 

  26. Yang R, Meng F, Ma S, Huang F, Liu H, Zhong Z. Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. Biomacromolecules 2011;12:3047–55.

    Article  CAS  Google Scholar 

  27. Wang YC, Liu XQ, Sun TM, Xiong MH, Wang J. Functionalized micelles from block copolymer of polyphosphoester and poly(ε-caprolactone) for receptor-mediated drug delivery. J Control Release. 2008;128:32–40.

    Article  CAS  Google Scholar 

  28. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    Article  CAS  Google Scholar 

  29. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 1994;27:2414–25.

    Article  CAS  Google Scholar 

  30. Theerasilp M, Nasongkla N. Comparative studies of poly(ε-caprolactone) and poly(D,L-lactide) as core materials of polymeric micelles. J Microencapsul. 2013;30:390–7.

    Article  CAS  Google Scholar 

  31. Narayanan K, Erathodiyil N, Gopalan B, Chong S, Wan ACA, Ying JY. Targeting Warburg effect in cancers with pegylated glucose. Adv Healthc Mater. 2016;5:696–701.

    Article  CAS  Google Scholar 

  32. Liu M, Huang G, Cong Y, Tong G, Lin Z, Yin Y. et al. The preparation and characterization of micelles from poly(y-glutamic acid)-graft-poly(l-lactide) and the cellular uptake thereof. J Mater Sci. 2015;26:187.

    Google Scholar 

  33. Wenger RH, Camenisch G, Desbaillets I, Chilov D, Gassmann M. Up-regulation of hypoxia-inducible factor-1α is not sufficient for hypoxic/anoxic p53 induction. Cancer Res. 1998;58:5678–80.

    CAS  Google Scholar 

  34. Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, et al. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol. 2009;174:1544–52.

    Article  CAS  Google Scholar 

  35. Zamora-León SP, Golde DW, Concha II, Rivas CI, Delgado-López F, Baselga J, et al. Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci USA. 1996;93:1847–52.

    Article  Google Scholar 

  36. Effert P, Beniers AJ, Tamimi Y, Handt S, Jakse G. Expression of glucose transporter 1 (Glut-1) in cell lines and clinical specimens from human prostate adenocarcinoma. Anticancer Res. 2004;24(5A):3057–64.

    CAS  Google Scholar 

  37. Petros RA, Desimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.

    Article  CAS  Google Scholar 

  38. Tian B, Ding Y, Han J, Zhang J, Han Y. N-acetyl-d-glucosamine decorated polymeric nanoparticles for targeted delivery of doxorubicin: synthesis, characterization and in vitro evaluation. Colloids Surf B: Biointerfaces. 2015;130:246–54.

    Article  CAS  Google Scholar 

  39. Zhu H, Zhang S, Ling Y, Meng G, Yang Y, Zhang W. PH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J Control Release. 2015;220:529–44.

    Article  CAS  Google Scholar 

  40. Guo Y, Zhang Y, Li J, Zheng Y, Lu Y, Jiang X, et al. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2015;7:5444–53.

    Article  CAS  Google Scholar 

  41. Suriano F, Pratt R, Tan JPK, Wiradharma N, Nelson A, Yang YY, et al. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery. Biomaterials 2010;31:2637–45.

    Article  CAS  Google Scholar 

  42. Moros M, Hernáez B, Garet E, Dias JT, Sáez B, Grazú V, et al. Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake. ACS Nano 2012;6:1565–77.

    Article  CAS  Google Scholar 

  43. Mumcuoglu D, Sardan Ekiz M, Gunay G, Tekinay T, Tekinay AB, Guler MO. Cellular internalization of therapeutic oligonucleotides by peptide amphiphile nanofibers and nanospheres. ACS Appl Mater Interfaces. 2016;8:11280–7.

    Article  CAS  Google Scholar 

  44. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc Natl Acad Sci USA. 2008;105:6596–601.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by Mahidol University. Man Theerasilp was partially supported by the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norased Nasongkla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theerasilp, M., Chalermpanapun, P., Sunintaboon, P. et al. Glucose-installed biodegradable polymeric micelles for cancer-targeted drug delivery system: synthesis, characterization and in vitro evaluation. J Mater Sci: Mater Med 29, 177 (2018). https://doi.org/10.1007/s10856-018-6177-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6177-7

Navigation