Skip to main content

Advertisement

Log in

Setting time and formability of calcium phosphate cements prepared using modified dicalcium phosphate anhydrous powders

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium phosphate cements (CPCs) were prepared using Ca4(PO4)2O (TeCP) and modified CaHPO4 (DCPA) to evaluate the effects of the powder properties for DCPA particles on the setting time and formability of the resulting CPCs. Two types of modified DCPA were prepared by milling commercially available DCPA with ethanol (to produce E-DCPA) or distilled water (to produce W-DCPA). The E-DCPA samples consisted of well-dispersed, fine primary particles, while the W-DCPA samples contained agglomerated particles, and had a smaller specific surface area. The mean particle size decreased with increased milling time in both cases. The raw CPC powders prepared using W-DCPA had a higher packing density than those prepared using E-DCPA, regardless of the mean particle size. The setting time of the CPC paste after mixing with distilled water decreased with decreases in the mean particle size and specific surface area, for both types of DCPA. The CPCs prepared using W-DCPA showed larger plasticity values compared with those prepared using E-DCPA, which contributed to the superior formability of the W-DCPA samples. The CPCs prepared using W-DCPA showed a short setting time and large plasticity values, despite the fact that only a small amount of liquid was used for the mixing of the raw CPC powders (a liquid-to-powder ratio of 0.25 g g−1 was used). It is likely that the higher packing density of the raw CPC powders prepared using W-DCPA was responsible for the higher performance of the resulting CPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop Clin North Am. 2000;31(38998):389–98.

    Article  Google Scholar 

  2. Goodrich JT, Sandler AL, Tepper O. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  Google Scholar 

  3. Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg. 2007;15:525–36.

    Google Scholar 

  4. Riccardi BF, Bostorm MP. Bone graft substitutes: claims and credibility. Semin Arthoplasty. 2012;24:119–23.

    Article  Google Scholar 

  5. Goodrich JT, Sandler AL, Tepper O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst. 2012;28:1577–88.

    Article  Google Scholar 

  6. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Och T, Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res A. 2002;59A:110–7.

    Article  Google Scholar 

  7. Gosain AK, Song L, Riordan P, Amarante MT, Nagy PG, Wilson CR, Toth JM, Ricci JL. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg. 2002;109:619–30.

    Article  Google Scholar 

  8. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A. 2004;68A:184–200.

    Article  Google Scholar 

  9. Gosain AK, Riordan PA, Song L, Amarante MT, Kalantarian B, Nagy PG, Wilson CR, Toth JM, McIntyre BL. A 1-year study of hydroxyapatite-derived biomaterials in an adult sheep model: III. Comparison with autogenous bone graft for facial augmentation. Plast Reconstr Surg. 2005;116:1044–52.

    Article  Google Scholar 

  10. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B. 2005;72B:94–101.

    Article  Google Scholar 

  11. Deie M, Ochi M, Adachi N, Nishimori M, Yokota K. Artificial bone grafting [calcium hydroxyapatite ceramic with an interconnected porous structure (IP-CHA)] and core decompression for spontaneous osteonecrosis of the femoral condyle in the knee. Knee Surg Sports Traumatol Arthrosc. 2008;16:753–8.

    Article  Google Scholar 

  12. Kaito T, Hosono N, Makino T, Kaneko N, Namekata M, Fuji T. Postoperative displacement of hydroxyapatite spacers implanted during double-door laminoplasty. J Neurosurg Spine. 2009;10:551–6.

    Article  Google Scholar 

  13. Tamai N, Myoui A, Kudawara I, Ueda T, Yoshikawa H. Novel fully interconnected porous hydroxyapatite ceramic in surgical treatment of benign bone tumor. J Orthop Sci. 2010;15:560–8.

    Article  Google Scholar 

  14. Maruyama M, Tensho K, Wakabayashi S, Terayama K. Hydroxyapatite block for reconstruction of severe dysplasia or acetabular bone defects in total hip arthroplasty: operative technique and clinical outcome. J Arthroplasty. 2012;27:591–7.

    Article  Google Scholar 

  15. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563–7.

    Article  Google Scholar 

  16. Briea J, Chartierb T, Chaputc C, Delagec C, Pradeauc B, Caired F, Boncoeure MP, Moreau JJ. A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. J Craniomaxillofac Surg. 2013;41:403–7.

    Article  Google Scholar 

  17. Bohner M, Gbureck M, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.

    Article  Google Scholar 

  18. Larssona S, Hanninkb G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury. 2011;42(Supplement2):S30–4.

    Article  Google Scholar 

  19. Cassidy C, Jupiter JB, Cohen M, DelliSanti M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constanz B. Norian SRS cement compared with conventional fixation in distal radial fractures: a randomized study. J Bone Joint Surg Am. 2003;85A:2127–37.

    Google Scholar 

  20. David L, Argenta L, Fisher D. Hydroxyapatite cement in pediatric craniofacial reconstruction. J Craniofac Surg. 2005;16:129–33.

    Article  Google Scholar 

  21. Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007;16:601–10.

    Article  Google Scholar 

  22. Wee AT, Wong YS. Percutaneous reduction and injection of Norian bone cement for the treatment of displaced intra-articular calcaneal fractures. Foot Ankle Spec. 2009;2:98–106.

    Article  Google Scholar 

  23. Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17:3980–6.

    Article  Google Scholar 

  24. Doi Y, Shimizu Y, Moriwaki Y, Aga M, Iwanaga H, Shibutani T, Yamamoto K, Iwayama Y. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials. 2001;22:847–54.

    Article  Google Scholar 

  25. Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials. 2002;23:1091–101.

    Article  Google Scholar 

  26. Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials. 2004;25:1439–51.

    Article  Google Scholar 

  27. Kuemmerle JM, Oberle A, Oechslin C, Bohner M, Frei C, Boecken I, von Rechenberg B. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty: an experimental study in sheep. J Craniomaxillofac Surg. 2005;33:37–44.

    Article  Google Scholar 

  28. Hannink G, Wolke JGC, Schreurs BW, Buma P. In vivo behavior of a novel injectable calcium phosphate cement compared with two other commercially available calcium phosphate cements. J Biomed Mater Res B. 2008;85B:478–88.

    Article  Google Scholar 

  29. Alge DL, Cruz GS, Goebel WS. Chu Tien-Min G. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Biomed Mater. 2009;4:1–9.

    Article  Google Scholar 

  30. Brown WE, Chow LC. Combinations of sparingly soluble calcium phosphates in slurries and pastes as mineralizers and cements. 1986. U.S. Patent No. 4,612,053.

  31. Brown WE, Chow LC. A new calcium phosphate water setting cement. In: Brown PW, editor. Cement research progress. Westerville: American Ceramic Society; 1986. p. 352–79.

    Google Scholar 

  32. Chow LC, Takagi S, Constantino PD, Friedman CD. Self-setting calcium phosphate cements. Mat Res Soc Symp Proc. 1991;179:3–24.

    Google Scholar 

  33. Ishikawa K, Takagi S, Chow LC, Ishikawa Y. Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med. 1995;6:528–33.

    Article  Google Scholar 

  34. Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behavior of fast-setting calcium phosphate cement. Biomaterials. 1995;16:855–60.

    Article  Google Scholar 

  35. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res. 1997;37:457–64.

    Article  Google Scholar 

  36. Haynes WM, Lide DR, Bruno TJ. CRC hand book of chemistry and physics. 94th ed. Florida: CRC Press; 2013. p. 182.

    Google Scholar 

  37. Roller PS. The bulking properties of microscopic particles. Ind Eng Chem. 1930;22:1206–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Sawamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawamura, T., Mizutani, Y., Okuyama, M. et al. Setting time and formability of calcium phosphate cements prepared using modified dicalcium phosphate anhydrous powders. J Mater Sci: Mater Med 25, 1631–1636 (2014). https://doi.org/10.1007/s10856-014-5209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5209-1

Keywords

Navigation