Skip to main content
Log in

Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat

Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this paper was to investigate the effect of carboxymethyl chitosan anti-adhesion solution on prevention of postsurgical adhesion. Forty adult male Wistar rats were randomly divided into three groups: 0.9 % normal saline solution (group A), hyaluronic acid gels (group B) and carboxymethyl chitosan anti-adhesion solution (group C). The animals were treated with normal saline, hyaluronic acid gels or carboxymethyl chitosan anti-adhesion solution at the time of surgery. After 2 or 3 weeks, the degree of adhesions and histological effects were determined. The adhesions in groups B and C were significantly decreased, and the levels of TGF-β1 and hydroxyproline in group C were significantly lower than that in group A (P < 0.05). The histopathology in group C showed fewer inflammatory cells and fibroblasts. Carboxymethyl chitosan anti-adhesion solution can effectively prevent postoperative adhesion which is a promising drug delivery system in the context of postsurgical anti-adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Yang B, Gong CY, Zhou ST, Li Z, Qi X, Zhong Q, Luo F, Qian Z. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomed. 2012;7:547–57.

    CAS  Google Scholar 

  2. Kutlay J, Ozer Y, Isik B, Kargici H. Comparative effectiveness of several agents for preventing postoperative adhesions. World J Surg. 2004;28:662–5.

    Article  Google Scholar 

  3. Mulier KE, Nguyen AH, Delaney JP, Marquez S. Comparison of Permacol™ and Strattice™ for the repair of abdominal wall defects. Hernia. 2011;15(3):315–9.

    Article  CAS  Google Scholar 

  4. Sahin M, Cakir M, Avsar FM, Tekin A, Kucukkartallar T, Akoz M. The effects of anti-adhesion materials in preventing postoperative adhesion in abdominal cavity (anti-adhesion materials for postoperative adhesions). Inflammation. 2007;6:244–9.

    Article  Google Scholar 

  5. Wei CZ, Hou CL, Gu QS, Jiang LX, Zhu B, Sheng AL. A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions’ prevention. Biomaterials. 2009;30:5534–40.

    Article  CAS  Google Scholar 

  6. Na NH, Kim IK, Han JH, Lee JG, Ton TI, Han DK, Ito Y, Song KS, Jang EC. Synthesis of O-carboxylated low molecular chitosan with azido phenyl group: its application for adhesion prevention. Macromol Res. 2010;10:1001–7.

    Article  Google Scholar 

  7. Lauder CI, Garcea G, Strickland A, Maddern GJ. Use of a modified chitosan-dextran gel to prevent peritoneal adhesions in rat model. J Surg Res. 2011;171:877–82.

    Article  CAS  Google Scholar 

  8. Muzzarelli RAA, Muzzarelli C. Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci. 2005;186:151–209.

    Article  CAS  Google Scholar 

  9. Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering. Adv Biochem Eng Biotechnol. 2011;125:1–27.

    CAS  Google Scholar 

  10. Park SH, Seo SY, Na NH, Kim KL, Lee JW, Woo HD, Lee JH, Seok HK, Lee JG, Chung SI, Chung KH, Han DK, Ito Y, Jang EC, Son TI. Preparation of a visible light-reactive low molecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability as an anti-adhesion agent. Macromol Res. 2011;9:921–7.

    Article  Google Scholar 

  11. Jiang LY, Li YB, Xiong CD. A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite. I. Preparation and properties. J Mater Sci Mater Med. 2009;20:1645–52.

    Article  CAS  Google Scholar 

  12. Zhang ZP, Zhou GW, Wu HP, Zhang DB, Shi RL, Pan YL. Experimental study on carboxymethyl chitosan in preventing peritoneal adhesion in rats. J Clin Res. 2010;27:101–4.

    CAS  Google Scholar 

  13. Daroz LRD, Lopes JB, Dallan LAO, Filho SPC, Moreira LFP, Stolf NAG. Prevention of postoperative pericardial adhesions using thermal sterile carboxymethyl chitosan. Rev Bras Cir Cardvasc. 2008;23(4):480–7.

    Article  Google Scholar 

  14. Kennedy R, Costain DJ, Mcalister VC, Lee TDG. Prevention of experiment postoperative peritoneal adhesions by N,O-carboxylmethyl chitosan. Surgery. 1996;120(5):866–70.

    Article  CAS  Google Scholar 

  15. Lou W, Zhang H, Ma J, Zhang D, Liu C, Wang S, Deng Z, Xu H, Liu J. In vivo evaluation of in situ polysaccharide based hydrogel for prevention of postoperative adhesion. Carbohydr Polym. 2012;90(2):1024–31.

    Article  CAS  Google Scholar 

  16. Zhou J, Elson C, Lee TD. Reduction in postoperative adhesion formation and re-formation after an abdominal operation with the use of N,O-carboxymethyl chitosan. Surgery. 2004;135(3):307–12.

    Article  Google Scholar 

  17. Wang D, Mo J, Pan S, Chen H, Zhen H. Prevention of postoperative peritoneal adhesions by O-carboxymethyl chitosan in a rat cecal abrasion model. Clin Invest Med. 2010;33(4):E254–60.

    CAS  Google Scholar 

  18. Harris ES, Morgan RF, Rodeheaver GT. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery. 1995;117:663–9.

    Article  CAS  Google Scholar 

  19. Nair SK, Bhat IK, Aurora AL. Role of proteolytic enzyme in the prevention of postoperative intraperitoneal adhesions. Arch Surg. 1974;108:849–53.

    Article  CAS  Google Scholar 

  20. Dong W, Han B, Feng Y, Song F, Chang J, Jiang H, Tang Y, Liu W. Pharmacokinetics and biodegradation mechanisms of a versatile carboxymethyl derivative of chitosan in rats: in vivo and in vitro evaluation. Biomacromolecules. 2010;11(6):1527–33.

    Article  CAS  Google Scholar 

  21. Ryan CK, Sax HC. Evaluation of a carboxymethylcellulose sponge for prevention of postoperative adhesions. Am J Surg. 1995;169(1):154–9.

    Article  CAS  Google Scholar 

  22. Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000;105(1):148–55.

    Article  CAS  Google Scholar 

  23. Lopes JB, Dallan LA, Moreira LF, Campana Filho SP, Gutierrez PS, Lisboa LA, de Oliveira SA, Stolf NA. Synergism between keratinocyte growth factor and carboxymethyl chitosan reduces pericardial adhesions. Ann Thorac Surg. 2010;90(2):566–72.

    Article  Google Scholar 

  24. Trowbridge JM, Rudisill JA, Ron D, Gallo RL. Dermatan sulfate binds and potentiates activity of keratinocyte growth factor (FGF-7). J Biol Chem. 2002;277(45):42815–20.

    Article  CAS  Google Scholar 

  25. Jiang D, Xu C, Li Z, Zhang Y, Han F, Jiang Z. Protective action of hepatocyte growth factor on transforming growth factor beta-1-induced alpha-smooth muscle actin and extracellular matrix in cultured human peritoneal fibroblasts. Med Sci Monit. 2010;16(8):BR250–4.

    Google Scholar 

  26. Hong X, Shen BY, Han BS. Study on the effect of carboxymethyl-chitosan in the prevention of postoperative abdominal adhesion and its mechanism of action. J Surg Concepts Pract. 2009;14:426–9.

    Google Scholar 

  27. Zhou J, Liwski RS, Elson C, Lee TD. Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N, O-carboxymethyl chitosan to block cell adherence. Thorac Cardiovasc Surg. 2008;135(4):777–83.

    Article  CAS  Google Scholar 

  28. Pan SR, Chen HF, Mo JC, Wang DJ, Zhang W, Zhang HL. Experimental Study on carboxymethyl chitosan used for prevention of postsurgical adhesions. Chin J Biomed Eng. 2006;25(3):277–82.

    CAS  Google Scholar 

  29. Filippo CD, Petronella P, Freda F, Scorzelli M, Ferretti M, Canonico S, Rossi F, D’Amico M. Involvement of the ubiquitin-proteasome system in the formation of experimental postsurgical peritoneal adhesions. Mediat Inflamm. 2012;2012:1–7.

    Article  Google Scholar 

  30. Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. Dig Surg. 2001;18:260–73.

    Article  CAS  Google Scholar 

  31. Attard JA, MacLean AR. Adhesive small bowel obstruction: epidemiology, biology and prevention. Can J Surg. 2007;50:291–300.

    Google Scholar 

  32. Axel S, Joachim B, Kasper O, Weiß J, Schmidt W, Rolle U. Experimental study evaluating the effect of a barrier method on postoperative intraabdominal adhesions. Dig Dis Sci. 2006;51(3):566–70.

    Article  Google Scholar 

  33. Yang Z, Han BQ, Fu DW, Liu W. Acute toxicity of high dosage carboxymethyl chitosan and its effect on the blood parameters in rats. J Mater Sci Mater Med. 2012;23:457–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the generous financial support from Shandong Provincial Natural Science Foundation, China (Y2008F15; ZR2012CM025) for grant support; The Scientific and Technological Development Project of Shandong Province (2012YD18063); Shandong Province Higher Educational Science, Technology Program (J11LF67) and the Health Department of Shandong Province (2011HZ115) and Weifang Science and Technology Bureau Project (201232112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifen Zhang or Heidi M. Mansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z., Zhang, W., Sun, W. et al. Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat. J Mater Sci: Mater Med 24, 2549–2559 (2013). https://doi.org/10.1007/s10856-013-4981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4981-7

Keywords

Navigation