Skip to main content
Log in

Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, MgO nanoparticles are applied to control the initial burst release by modification of matrix structure, thereby affecting the release mechanism. The effects of MgO nanofiller loading on the in vitro release of a model drug are investigated. Surface topography and release kinetics of hydrogel nanocomposites are also studied in order to have better insight into the release mechanism. It was found that the incorporation of MgO nanofillers can significantly decrease the initial burst release. The effect of genipin (GN) on burst release was also compared with MgO nanoparticles, and it was found that the impact of MgO on burst release reduction is more obvious than GN; however, GN cross-linking caused greater final release compared to blanks and nanocomposites. To confirm the capability of nanocomposite hydrogels to reduce burst release, the release of β-carotene in Simulated Gastric Fluid and Simulated Intestinal Fluid was also carried out. Thus, the application of MgO nanoparticles seems to be a promising strategy to control burst release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliver Rev. 2008;60:1638–49.

    Article  CAS  Google Scholar 

  2. Sahiner N, Ozaya H, Ozaya O, Aktas N. A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl Catal B Environ. 2010;101:137–43.

    Article  CAS  Google Scholar 

  3. Huang Y, Zheng Y, Song W, Ma Y, Wu J, Fan L. Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels. Composites: Part A. 2011;42:1398–405.

    Article  Google Scholar 

  4. Zhao X, Sui K, Wu W, Liang H, Li Y, Wu Z, Xia Y. Synthesis and properties of amphiphilic block polymer functionalized multi-walled carbon nanotubes and nanocomposites. Compos Part A. 2012;43:758–64.

    Article  CAS  Google Scholar 

  5. Satarkar NS, Hilt JZ. Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater. 2008;4:11–6.

    Article  CAS  Google Scholar 

  6. Li X, Weng Y, Kong X, Zhang B, Li M, Diao K, Zhang Z, Wang X, Chen H. A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering. J Mater Sci: Mater Med. doi:10.1007/s10856-012-4757-5.

  7. Singh R, Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci Mater Med. doi:10.1007/s10856-012-4730-3.

  8. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharmacol Res. 2004;27:1–12.

    Article  CAS  Google Scholar 

  9. Huang X, Brazel ChS. Analysis of burst release of proxyphylline from poly (vinylalcohol) hydrogels. Chem Eng Commun. 2003;190:519–32.

    Article  CAS  Google Scholar 

  10. Lu S, Anseth KS. Modeling and optimization of drug release from laminated polymer matrix devices. AIChE J. 1998;44:1689–96.

    Article  CAS  Google Scholar 

  11. Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release. 2000;63:155–63.

    Article  CAS  Google Scholar 

  12. Shively ML, Coonts BA, Renner WD, Southard JL, Bennet AT. Physicochemical characterization of polymeric injectable implant delivery system. J Controll Release. 1995;33:237–43.

    Article  CAS  Google Scholar 

  13. Kissel T, Li YX, Volland C, Görich S, Koneberg R. Parenteral protein delivery systems using biodegradable polyester of ABA block structure containing hydrophobic poly(lactide-co-glycolide) A blocks and hydrophilic poly(ethylene oxide) B blocks. J Controll Release. 1996;39:315–26.

    Article  CAS  Google Scholar 

  14. Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres fabricated by double-emulsion solvent extraction/evaporation method. J Control Release. 2000;69:81–96.

    Article  CAS  Google Scholar 

  15. Wang J, Wang BM, Schwendeman SP. Mechanistic evaluation of the glucose induced reduction in initial burst release of octreotide acetate from poly(d,l lactide-co-glycolide) microspheres. Biomaterials. 2004;25:919–1927.

    Google Scholar 

  16. Park TG, Cohen S, Langer R. Controlled protein release from polyethyleneimine-coated poly (l-lactic acid)/Pluronic blend matrices. Pharm Res. 1992;9:37–9.

    Article  CAS  Google Scholar 

  17. Lalla JK, Snape K. Biodegradable microspheres of poly (d,l-lactic acid) containing piroxicam as a model dispersion drug for controlled release via the parenteral route. J Microencapsul. 1993;10:449–60.

    Article  CAS  Google Scholar 

  18. Chiou S, Wu W, Huang Y, Chung T. Effects of the characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres. J Microencapsul. 2001;18:613–25.

    Article  CAS  Google Scholar 

  19. Fu K, Harrell R, Zinski K, Um C, Jaklenec A, Frazier J, Lotan N, Burke P, Klibanov AM, Langer R. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J Pharm Sci. 2003;92:1582–91.

    Article  CAS  Google Scholar 

  20. Sheikh Hasan A, Socha M, Lamprecht A, El Ghazouani F, Sapin A, Hoffmana M, Maincent P, Ubrich N. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm. 2007;344:53–61.

    Google Scholar 

  21. Saravanan M, Bhaskar K, Srinivasa RG, Dhanaraju MD. Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. J Microencapsul. 2003;20:289–302.

    CAS  Google Scholar 

  22. Bouissou C, Rouse JJ, Price R, van der Walle CF. The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release. Pharm Res. 2006;23:1295–305.

    Article  CAS  Google Scholar 

  23. Yamaguchi Y, Takenaga M, Kitagawa A, Ogawa Y, Mizushima Y, Igarashi R. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J Controll Release. 2002;81:235–49.

    Article  CAS  Google Scholar 

  24. Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25:427–37.

    Article  CAS  Google Scholar 

  25. Bhavsar MD, Tiwari SB, Amiji MM. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J Controll Release. 2006;110:422–30.

    Article  CAS  Google Scholar 

  26. Leach WT, Simpson DT, Val TN, Anuta EC, Yu Z. Williams III R O, Johnston K P. Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release. J Pharm Sci. 2005;94:56–69.

    Article  CAS  Google Scholar 

  27. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–86.

    Article  CAS  Google Scholar 

  28. Fu G, Vary PS, Lin CT. Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B. 2005;109:8889–98.

    Article  CAS  Google Scholar 

  29. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorgan Mater. 2001;3:643–6.

    Article  CAS  Google Scholar 

  30. Huang L, Li D, Lin Y, Wei M, Evans DG, Duan X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorgan BioChem. 2005;99:986–93.

    Article  CAS  Google Scholar 

  31. Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agent. 2006;27:513–7.

    Article  CAS  Google Scholar 

  32. Daniel-da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Gil T. Impact of magnetic nanofillers in the swelling and release properties of carrageenan hydrogel nanocomposites. Carbohydr Polym. 2012;87:328–35.

    Article  CAS  Google Scholar 

  33. Hezaveh H, Muhamad II. The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels. Carbohydr Polym. 2012;89:138–45.

    Article  CAS  Google Scholar 

  34. Ritger PL, Peppas NA. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Controll Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  35. Song F, Li M, Yang C, Yan L. Genipin-cross-linked casein hydrogels for controlled drug delivery. Int J Pharm. 2009;373:41–7.

    Article  CAS  Google Scholar 

  36. Kirk-Othmer. Food and Feed Technology, Chapter 28. 5th ed. USA: Wiley; 2007.

    Google Scholar 

  37. Muhamad II, Fen LS, Hui HN, Mustapha NA. Genipin-cross-linked kappa carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym. 2011;83:1207–12.

    Article  CAS  Google Scholar 

  38. Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications. Materials. 2009;2:353–73.

    Article  CAS  Google Scholar 

  39. Berlin E, Anderson BA, Pallansch MJ. Water sorption by dried dairy products stabilized with carboxymethyl cellulose. J Dairy Sci. 1973;56:685–9.

    Article  CAS  Google Scholar 

  40. Chen J, Liu M, Chen Sh. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N,Ndiethylacrylamide) semi-IPN hydrogel. Mater Chem Phys. 2009;115:339–46.

    Article  CAS  Google Scholar 

  41. Hezaveh H, Muhamad II. Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int J Biol Macromol. 2012;50:1334–40.

    Article  CAS  Google Scholar 

  42. Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, Dong Q, Yin T. Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. Nanobiotechnology. 2011;5:36–40.

    Article  CAS  Google Scholar 

  43. Meena R, Prasad K, Siddhanta AK. Effect of genipin, a naturally occurring crosslinker on the properties of kappa-carrageenan. Int J Biol Macromol. 2007;41:94–101.

    Article  CAS  Google Scholar 

  44. Tonda-Turo C, Gentile P, Saracino S, Chiono V, Nandagiri VK, Muzio G, Canuto RA, Ciardelli G. Comparative analysis of gelatin scaffolds crosslinked by GN and silane coupling agent. Int J Biol Macromol. 2011;49:700–6.

    Article  CAS  Google Scholar 

  45. Durme KV, Mele BV, Loos W, Du PF. Introduction of silica into thermo-responsive poly(N-isopropyl acrylamide) hydrogels: a novel approach to improve response rates. Polymer. 2005;46:9851.

    Article  Google Scholar 

  46. Xiang Y, Chen D. Preparation of a novel pH-responsive silver nanoparticle/poly (HEMA–PEGMA–MAA) composite hydrogel. Eur Polym J. 2007;43:4178–87.

    Article  CAS  Google Scholar 

  47. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules. 1998;31:6099.

    Article  CAS  Google Scholar 

  48. Huang X, Chestang BL, Brazel CS. Minimization of initial burst in poly(vinyl alcohol) hydrogels by surface extraction and surface-preferential crosslinking. Int J Pharm. 2002;248:183–92.

    Article  CAS  Google Scholar 

  49. Aikawa K, Mitsutake N, Uda H, Tanaka S, Shimamura H, Aramaki Y, Tsuchiya S. Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and the application to nasal delivery. Int J Pharm. 1998;168:181–8.

    Article  CAS  Google Scholar 

  50. Daniel-da-Silva AL, Ferreir L. Gil Ana M, Trindade T. Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J Colloid Interface Sci. 2011;355:512–7.

    Article  CAS  Google Scholar 

  51. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Exp Opin Drug Deliv. 2010;7:429–44.

    Article  CAS  Google Scholar 

  52. Hezaveh H, Muhamad II. Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J. Taiwan Inst Chem Eng. 2012. doi:http://dx.doi.org/10.1016/j.jtice.2012.10.011.

  53. Gohel MC, Amin AF. Formulation design and optimization of modified-release microspheres of diclofenac sodium. Drug Dev Ind Pharm. 1999;25:247–51.

    Article  CAS  Google Scholar 

  54. Naves MMV, Moreno FS. Beta-carotene and cancer chemoprevention: from epidemiological association to cellular mechanisms of action. Nutr Res. 1998;18:1807–24.

    Article  CAS  Google Scholar 

  55. Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.

    Article  CAS  Google Scholar 

  56. Gaziano JM, Manson JE, Buring JE, Hennekens CH. Dietary antioxidants and cardiovascular disease. Ann NY Acad Sci. 1992;669:249–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Food and Biomaterial Engineering lab, Bioprocess Engineering technicians and RUGrant vot 01H31from Research Management Centre UTM for support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hezaveh, H., Muhamad, I.I. Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites. J Mater Sci: Mater Med 24, 1443–1453 (2013). https://doi.org/10.1007/s10856-013-4914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4914-5

Keywords

Navigation