Skip to main content
Log in

Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The goal of this work is to develop an injectable nucleus pulposus (NP) tissue engineering scaffold with the ability to form an adhesive interface with surrounding disc tissue. A family of in situ forming hydrogels based on poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAm-g-CS) were evaluated for their mechanical properties, bioadhesive strength, and cytocompatibility. It was shown experimentally and computationally with the Neo-hookean hyperelastic model that increasing the crosslink density and decreasing the CS concentration increased mechanical properties at 37 °C, generating several hydrogel formulations with unconfined compressive modulus values similar to what has been reported for the native NP. The adhesive tensile strength of PNIPAAm increased significantly with CS incorporation (p < 0.05), ranging from 0.4 to 1 kPa. Live/Dead and XTT assay results indicate that the copolymer is not cytotoxic to human embryonic kidney (HEK) 293 cells. Taken together, these data indicate the potential of PNIPAAm-g-CS to function as a scaffold for NP regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao Q, McCullen GM, Higham PA. The artificial disc: theory, design, and materials. Biomaterials. 1996;17(12):1157–67.

    Article  CAS  Google Scholar 

  2. Kalb C. The great back pain debate. Newsweek. 2004;143(17):42–9.

    Google Scholar 

  3. Bogduck N. Clinical anatomy of the lumbar spine and sacrum. Fourth edition ed. Oxford: Elsevier Churchill Livingstone; 2005.

    Google Scholar 

  4. Cramer G, Darby SA. Basic and clinical anatomy of the spine, spinal cord, and ans. St. Louis: Elsevier Mosby; 2005.

    Google Scholar 

  5. Benneker L, Heini PF, Alini M, Anderson SE. Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine. 2005;30(2):167–73.

    Article  Google Scholar 

  6. Osti O, Vernon-Roberts B, Moore R, Frasier RD. Annular tears and disc degeneration in the lumbar spine. J Bone Joint Surg. 1992;74B:678–82.

    Google Scholar 

  7. Li-Wei X, Fang H, Chen A, Li F. Differentiation of rat adipose tissue-derived mesenchymalstem cells towards a nucleus pulposus-like phenotype in vitro. Chin J Traumatol. 2009;12(2):98–103.

    Google Scholar 

  8. Feng G, Jin X, Hu J, Ma H, Gupte MJ, Liu H, Ma PX. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials. 2011;32:8182–9.

    Article  CAS  Google Scholar 

  9. Meisel H, Ganey T, Hutton W, Moseley T, Hedrick M, (eds) (2007) Nucleus pulposus regeneration using fresh autologous adipose derived cells. Abstracts of ICRS. Warsaw, 2007.

  10. Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, Hutton WC. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine. 2003;28:2609–20.

    Article  Google Scholar 

  11. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S. Intervertebral disc cell therapy for regeneration: mesenchymal stem cells implantation in rat intervertebral discs. Ann Biomed Eng. 2004;32:43–434.

    Article  Google Scholar 

  12. Horner H, Roberts S, Bielby RCD, Menage J, Evans H, Urban JPG. Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine. 2002;27:1018–28.

    Article  Google Scholar 

  13. Zhang C, Dike R, Zhang R, Wang S, Yang F (eds) (2008). Tissue-engineered composite of three dimensional PLGA scaffold seeded with nucleus pulposus cells for intervertebral disc regeneration. Proceedings of the NASS 23rd Annual Meeting; 2008: The Spine Journal.

  14. Richardson S, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials. 2006;27:4069–78.

    Article  CAS  Google Scholar 

  15. Wan Y, Fenga G, Shena F, Laurencin C, Lia X. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials. 2008;29:643–52.

    Article  CAS  Google Scholar 

  16. Borges A, Eyholzer C, Duc F, Bourban PE, Tingaut P, Zimmerman T, Pioletti DP, Mason JAE. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater. 2011;7:3412–21.

    Article  CAS  Google Scholar 

  17. Richardson S, Hughes N, Hunt JA, Freemont AJ, Hoyland JA. Human mesenchymal stem cell differentiation to NP-like cells in chitosan–glycerophosphate hydrogels. Biomaterials. 2008;29:85–93.

    Article  CAS  Google Scholar 

  18. Collin E, Grad S, Zeugolis DI, Vinatier CS, Clouet JR, Guicheux JJ, Weiss P, Alini M, Pandit AS. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials. 2011;32:2862–70.

    Article  CAS  Google Scholar 

  19. Revell P, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L. Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med. 2007;18:303–8.

    Article  CAS  Google Scholar 

  20. Klara P, Ray CD. Artificial nucleus replacement: clinical experience. Spine. 2002;27:1374–7.

    Article  Google Scholar 

  21. Bertagnoli R, Schonmayr R. Surgical and clinical results with the PDN prosthetic disc-nucleus device. Eur Spine J. 2002;11(Suppl 2):S143–8.

    Google Scholar 

  22. Nerurkar N, Elliott DM. Mauck RL Mechanical design criteria for intervertebral disc tissue engineering. J Biomech. 2010;43:1017–30.

    Article  Google Scholar 

  23. Ayano E, Karaki M, Ishibarab T, Kanazawa H, Okano T. Poly (N-isopropylacrylamide)–PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. Colloids Surf B. 2012;99:67–73.

    Article  CAS  Google Scholar 

  24. Lue S, Chen CH, Shih CM, Tsaia MC, Kuo CY, Lai JY. Grafting of poly(N-isopropylacrylamide-co-acrylic acid) on micro-porous polycarbonate films: regulating lower critical solution temperatures for drug controlled release. J Membr Sci. 2011;379(1–2):330–40.

    Article  CAS  Google Scholar 

  25. Fu G, Soboyejo WO. Investigation of swellable poly (N-isopropylacrylamide) based hydrogels for drug delivery. Mater Sci Eng C. 2011;31(5):1084–90.

    Article  CAS  Google Scholar 

  26. Galperin ALT, Garty S, Ratner BD. Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications. J Biomed Mater Res A. 2012. doi:10.1002/jbm.a.34380.

    Google Scholar 

  27. Klouda L, Perkins KR, Watsona BM, Hacker MC, Bryant SJ, Raphael RM, Kasper FK, Mikos AG. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater. 2011;7(4):1460–7.

    Article  CAS  Google Scholar 

  28. Kim S, Healy KE. Synthesis and characterization of Injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules. 2003;4:1214–23.

    Article  CAS  Google Scholar 

  29. Muramatsu K, Wada T, Hirai H, Miyawaki F. Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)-grafted hyaluronan as an injectable and self-assembling scaffold for cartilage tissue engineering. J Biomed Sci Eng. 2012;5:639–46.

    Article  Google Scholar 

  30. Vernengo J, Fussell GW, Smith NG, Lowman AM. Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J Biomed Mater Res B. 2008;84B(1):64–9.

    Article  CAS  Google Scholar 

  31. Conova L, Vernengo J, Jin Y, Himes TB, Neuhuber B, Fischer I, Lowman A. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. J Neurosurg Spine. 2011;. doi:10.3171/2011.7.SPINE11194.

    Google Scholar 

  32. Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials. 2006;27:176–84.

    Article  CAS  Google Scholar 

  33. Comolli N, Neuhuber B, Fischer I, Lowman A. In vitro analysis of PNIPAAm–PEG, a novel, injectable scaffold for spinal cord repair. Acta Biomater. 2009;5:1046–55.

    Article  CAS  Google Scholar 

  34. Vernengo J, Fussell G, Smith NG, Lowman AM. Synthesis and characterization of injectable bioadhesive hydrogels for nucleus pulposus replacement and repair of the damaged intervertebral disc. J Biomed Mater Res B. 2010;93B(2):309–17.

    Article  CAS  Google Scholar 

  35. Matsuda S, Iwata H, Se N, Ikada Y. Bioadhesion of gelatin films crosslinked with glutaraldehyde. J Biomed Mater Res. 1999;45:20–7.

    Article  CAS  Google Scholar 

  36. Herget G, Kassaa M, Riedeb UN, Lua L, Brethnera L, Hassea J. Experimental use of an albumin-glutaraldehyde tissue adhesive for sealing pulmonary parenchyma and bronchial anastomoses. Eur J Cardiothorac Surg. 2001;19:4–9.

    Article  CAS  Google Scholar 

  37. Chanda M, Rempel GL. A new method of gel-coating polyethyleneimine (PEI) on organic resin beads.High capacity and fast kinetics of PEI gel-coated on polystyrene. Ind Eng Chem Res. 2001;40:1624–32.

    Article  CAS  Google Scholar 

  38. Chang Y, Tsaib C, Liangb H, Sung H. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials. 2002;23:2447–57.

    Article  CAS  Google Scholar 

  39. Godbey W, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45:268–75.

    Article  CAS  Google Scholar 

  40. Bieber T, Elsasser HP. Preparation of a low molecular weight polyethylenimine for efficient cell transfection. Biotechniques. 2001;30:74–81.

    CAS  Google Scholar 

  41. Ronca F, Palmieri L, Panicucci P, Ronca G. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage. 1998;6(Suppl A):14–21.

    Article  Google Scholar 

  42. Pipitone V. Chondroprotection with chondroitin sulfate. Drugs Exp Clin Res. 1991;17:3–7.

    CAS  Google Scholar 

  43. Moss M, Kruger GO, Reynolds DC. The effect of chondroitin sulfate on bone healing. Oral Surg Oral Med Oral Pathol. 1965;20:795–801.

    Article  CAS  Google Scholar 

  44. Lee C, Huang CP, Lee YD. Synthesis and characterizations of amphiphilic poly(l-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biomol Eng. 2007;24:131–9.

    Article  CAS  Google Scholar 

  45. Gonzales A, Anguiano-Igea S, Otero-Espinar FJ, Mendez JB. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. Eur J Pharm Biopharm. 1999;48:149–55.

    Article  Google Scholar 

  46. Rubinstein A, Nakar D, Sintov A. Chondroitin sulfate: potential biodegradable carrier for colon-speci®c drug delivery. Int J Pharm. 1992;84:141–50.

    Article  CAS  Google Scholar 

  47. Gupta N, Ghute PP, Badiger MV. Synthesis and characterization of thermo-sensitive graft copolymer of carboxymethyl guar and poly(N-isopropylacrylamide). Carbohydr Polym. 2011;83:74–80.

    Article  CAS  Google Scholar 

  48. Vasile C, Nita LE. Novel multi-stimuli responsive sodium alginate-grafted-poly(N-isopropylacrylamide) copolymers: II. Dilute solution properties. Carbohydr Polym. 2011;86:77–84.

    Article  CAS  Google Scholar 

  49. Duana C, Zhang D, Wang F, Zheng D, Jia L, Feng F, Liu Y, Wang Y, Tian K, WAng F, Zhang Q. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm. 2011;409:252–9.

    Article  Google Scholar 

  50. Varghese J, Ismalia YA, Lee CK, Shin KM, Shin MK, Kim SI, So I, Kim SJ. Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate. Sens Actuators B. 2008;135:336–41.

    Article  Google Scholar 

  51. Bryant S, Davis-Arehart KA, Luo N, Shoemaker RK, Arther JA, Anseth KS. Synthesis and characterization of photopolymerized multifunctional hydrogels: water soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules. 2004;37:6726–33.

    Article  CAS  Google Scholar 

  52. Wang L, Shen SS, Lu SC. Synthesis and characterization of chondroitin sulfate–methacrylate hydrogels. Carbohydr Polym. 2003;52:389–96.

    Article  CAS  Google Scholar 

  53. Ma X, Cui Y, Zhao X, Zheng S, Tang X. Different deswelling behavior of temperature-sensitive microgels of poly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates. J Colloid Interface Sci. 2004;276:53–9.

    Article  CAS  Google Scholar 

  54. ASTM. Standard test method for strength properties of tissue adhesives in tension. ASTM Int. 2005;F(2258-05):1308–12.

    Google Scholar 

  55. Chen J, Cheng T. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50(1):107–16.

    Article  CAS  Google Scholar 

  56. Vernon B, Kim SW, Bae YH. Thermoreversible copolymer gels for extracellular matrix. J Biomed Mater Res. 2000;51:69–79.

    Article  CAS  Google Scholar 

  57. Umehara S, Tadano SP, Abumi KMD, Katagiri KMS, Kaneda KMD, Ukai TP. Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc. Spine. 1996;21:811–9.

    Article  CAS  Google Scholar 

  58. Johannessen W, Vresilovic EJ, Seguritan J, Elliott D. Altered nucleus pulposus mechanics using chondroitinase-ABC and genipin as a model of early disc degeneration. Trans Orthop Res Soc. 2004;29:1150.

    Google Scholar 

  59. Blanco M, Olmo R, Teijon JM. Hydrogels. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 2nd ed. New York: Marcel Dekker; 2004. p. 239–60.

    Google Scholar 

  60. Kinloch A. The science of adhesion. J Mater Sci. 1980;15:2141–66.

    Article  CAS  Google Scholar 

  61. West J. Hubbell J comparison of covalently and physically cross-linked polyethylene glycol-based hydrogels for the prevention of postoperative adhesions in a rat model. Biomaterials. 1995;16:1153–6.

    Article  CAS  Google Scholar 

  62. Peppas N, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. Control Release. 1985;2:257–75.

    Article  CAS  Google Scholar 

  63. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J. A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials. 2010;31:2788–97.

    Article  CAS  Google Scholar 

  64. Wang D, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial intergration. Nat Mater. 2007;6(5):385–92.

    Article  CAS  Google Scholar 

  65. Varghese S, Hwang NS, Canver A, Theprungsirkul P, Lin DW, Elisseef J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27(1):12–21.

    Article  CAS  Google Scholar 

  66. Hoogendoorn R, Kroeze RJ, Bank RA, Wuisman PI, Helde MN. Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J cell Mol Med. 2008;12(6A):2205–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Vernengo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiltsey, C., Kubinski, P., Christiani, T. et al. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. J Mater Sci: Mater Med 24, 837–847 (2013). https://doi.org/10.1007/s10856-013-4857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4857-x

Keywords

Navigation