Skip to main content

Advertisement

Log in

Stability of plasma electrolytic oxidation coating on titanium in artificial saliva

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive PEO coating on titanium with high Ca/P ratio was fabricated and characterized with respect to its morphology, composition and microstructure. Long-term electrochemical stability of the coating and Ti4+ ion release was evaluated in artificial saliva. Influence of the lactic acid and fluoride ions on corrosion protection mechanism of the coated titanium was assessed using AC and DC electrochemical tests. The PEO-treated titanium maintained high passivity in the broad range of potentials up to 2.5 V (Ag/AgCl) for up to 8 weeks of immersion in unmodified saliva and exhibited Ti4+ ion release <0.002 µg cm−2 days−1. The high corrosion resistance of the coating is determined by diffusion of reacting species through the coating and resistance of the inner dense part of the coating adjacent to the substrate. Acidification of saliva in the absence of fluoride ions does not affect the surface passivity, but the presence of 0.1 % of fluoride ions at pH ≤4.0 causes loss of adhesion of the coating due to inwards migration of fluoride ions and their adsorption at the substrate/coating interface in the presence of polarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  2. Sul Y-T, Jeong Y, Johansson C, Albrektsson T. Oxidized bioactive implants are rapidly and strongly integrated in bone. Part 1: experimental implants. Clin Oral Implant Res 2006;17:521–6

    Google Scholar 

  3. Giordano C, Chiesa R, Sandrini E, Cigada A, Giavaresi G, Fini M, Giardino R. Physical and biological characterizations of a novel multiphase anodic spark deposition coating to enhance implant osseointegration. J Mater Sci Mater Med. 2005;16:1221–9.

    Article  CAS  Google Scholar 

  4. Krupa D, Baszkiewicz J, Zdunek J, Smolik J, Slomka Z, Sobczak JW. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf Coat Technol. 2010;205:1743–9.

    Article  CAS  Google Scholar 

  5. Sul Y-T, Johansson C, Wennerberg A, Cho L-R, Chang B-S, Albrektsson T. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Max Implant. 2005;20:349–59.

    Google Scholar 

  6. Sul Y-T, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.

    Article  CAS  Google Scholar 

  7. Terleeva OP, Sharkeev YP, Slonova AI, Mironov IV, Legostaeva EV, Khlusov IA, Matykina E, Skeldon P, Thompson GE. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications. Surf Coat Technol. 2010;205:1723–9.

    Article  CAS  Google Scholar 

  8. Whiteside P, Matykina E, Gough JE, Skeldon P, Thompson GE. In vitro evaluation of cell proliferation and collagen synthesis on titanium following plasma electrolytic oxidation. J Biomed Mater Res. 2010;94:38–46.

    Article  Google Scholar 

  9. Matykina E, Monfort F, Berkani A, Skeldon P, Thompson GE, Gough J. Characterization of spark-anodized titanium for biomedical applications. J Electrochem Soc. 2007;154:C279–85.

    Article  CAS  Google Scholar 

  10. Zhang Y, Matykina E, Skeldon P, Thompson GE. Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium. J Mater Sci Mater Med. 2009;21:81–8.

    Article  CAS  Google Scholar 

  11. Sul Y-T, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005;26:6720–30.

    Article  CAS  Google Scholar 

  12. Sul Y-T, Johansson J, Yoon G-S, Johansson C. Resonance frequency measurements in vivo and related surface properties of magnesium-incorporated, micropatterned and magnesium-incorporated TiUnite®, Osseotite®, SLA® and TiOblastst® implants. Clin Oral Implant Res. 2009;20:1146–55.

    Article  Google Scholar 

  13. Kang B-S, Sul Y-T, Oh S-J, Lee H-J, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009;5:2222–9.

    Article  CAS  Google Scholar 

  14. Jarmar T, Palmquist A, Bränemark R, Hermansson L, Engqvist H, Thomsen P. Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. Clin Implant Dent R. 2008;10:11–22.

    Article  Google Scholar 

  15. Lee SY, Piao CM, Koak JY, Kim SK, Kim YS, Ku Y, Rhyu IC, Han CH, Heo SJ. A 3-year prospective radiographic evaluation of marginal bone level around different implant systems. J Oral Rehabil. 2010;37:538–44.

    Article  CAS  Google Scholar 

  16. Friberg B, Jemt T. Clinical experience of TiUnite® implants: a 5-year cross-sectional, retrospective follow-up study. Clin Implant Dent R. 2010;12:e95–103.

    Article  Google Scholar 

  17. Mu Y, Kobayashi T, Tsuji K, Sumita M, Hanawa T. Causes of titanium release from plate and screws implanted in rabbits. J Mater Sci Mater. 2002;13:583–8.

    Article  CAS  Google Scholar 

  18. Vieira AC, Ribeiro AR, Rocha LA, Celis JP. Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear. 2006;261:994–1001.

    Article  CAS  Google Scholar 

  19. Tsuboi Y, Ektessabi AM, Sennerby L, Albrektsson T, Otsuka T, Iizuka T, Johansson C, Wennerberg A. In vivo measurement of titanium release by PIXE. Nucl Instrum Meth B. 1996;109–110:345–9.

    Article  Google Scholar 

  20. Zaffe D, Bertoldi C, Consolo U. Element release from titanium devices used in oral and maxillofacial surgery. Biomaterials. 2003;24:1093–9.

    Article  CAS  Google Scholar 

  21. Finet B, Weber G, Cloots R. Titanium release from dental implants: an in vivo study on sheep. Mater Lett. 2000;43:159–65.

    Article  CAS  Google Scholar 

  22. Hafez HS, Selim EMN, Kamel Eid FH, Al-Ashkar EA, Mostafa YA. Cytotoxicity, genotoxicity, and metal release in patients with fixed orthodontic appliances: a longitudinal in vivo study. Am J Orthod Dentofac. 2011;140:298–308.

    Article  Google Scholar 

  23. Cung C-H, Kim H-J, Jeong Y-T, Son M-K, Jeong Y-H, Choe H-C. Electrochemical behavior of dental implant system before and after clinical use. T Nonferr Metal Soc. 2009;19:846–51.

    Article  Google Scholar 

  24. Elagli K, Traisnel M, Hildebrand HF. Electrochemical behaviour of titanium and dental alloys in artificial saliva. Electrochim Acta. 1993;38:1769–74.

    Article  CAS  Google Scholar 

  25. Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Baslé MF, Chappard D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2:121–9.

    Article  CAS  Google Scholar 

  26. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21.

    Article  CAS  Google Scholar 

  27. Strietzel R, Hosch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials. 1998;19:1495–9.

    Article  CAS  Google Scholar 

  28. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86:320–9.

    Article  CAS  Google Scholar 

  29. Joska L, Fojt J. Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions. J Mater Sci Mater. 2010;21:481–8.

    Article  CAS  Google Scholar 

  30. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995–2002.

    Article  CAS  Google Scholar 

  31. Arys A, Philippart C, Dourov N, He Y, Le QT, Pireaux JJ. Analysis of titanium dental implants after failure of osseointegration: combined histological, electron microscopy, and X-ray photoelectron spectroscopy approach. J Biomed Mater Res. 1998;43:300–12.

    Article  CAS  Google Scholar 

  32. Matykina E, Arrabal R, Skeldon P, Thompson GE. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium. Acta Biomater. 2009;5:1356–66.

    Article  CAS  Google Scholar 

  33. Hussein RO, Nie X, Northwood DO. Influence of process parameters on electrolytic plasma discharging behaviour and aluminum oxide coating microstructure. Surf Coat Technol. 2010;205:1659–67.

    Article  CAS  Google Scholar 

  34. Azumi K, Yasui N, Seo M. Changes in the properties of anodic oxide films formed on titanium during long-term immersion in deaerated neutral solutions. Corros Sci. 2000;42:885–96.

    Article  CAS  Google Scholar 

  35. Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20:305–14.

    Article  CAS  Google Scholar 

  36. Yamazoe J, Nakagawa M, Matono Y, Takeuchi A, Ishikawa K. The development of Ti alloys for dental implant with high corrosion resistance and mechanical strength. Dent Mater J. 2007;26:260–7.

    Article  CAS  Google Scholar 

  37. Ibris N, Mirza Rosca JC. EIS study of Ti and its alloys in biological media. J Electroanal Chem. 2002;526:53–62.

    Google Scholar 

  38. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta. 1996;41:1143–53.

    Article  CAS  Google Scholar 

  39. Gonzalez JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109–15.

    Article  CAS  Google Scholar 

  40. Gnedenkov SV, Sinebryukhov SL, Sergienko VI. Electrochemical impedance simulation of a metal oxide heterostructure/electrolyte interface: a review. Russ J Electrochem. 2006;42:197–211.

    Article  CAS  Google Scholar 

  41. Dimitrova R, Catalan L, Alexandrov D, Chen A. Impedance study of GaN and InGaN semiconductor anion selective electrodes. Electroanalysis. 2008;20:789–96.

    Article  CAS  Google Scholar 

  42. Stewart KC, Kolman DG, Taylor SR. The effect of parasitic conduction paths on EIS measurements in low conductivity media. In: Scully JR, Silverman DC, Kendig MW, editors. Electrochemical impedance: analysis and interpretation, ASTM STP 1188. Philadelphia: American Society for Testing and Materials; 1993. p. 73–93.

    Chapter  Google Scholar 

  43. Abdel Rahim MA. Variation of the dielectric constant of anodic oxide films on titanium with oxygen evolution. J Appl Electrochem. 1995;25:881–5.

    Article  Google Scholar 

  44. Gnedenkov SV, Sinebryukhov SL. Electrochemical impedance spectroscopy of oxide layers on the titanium surface. Russ J Electrochem. 2005;41:858–65.

    Article  CAS  Google Scholar 

  45. Messer RLW, Seta F, Mickalonis J, Brown Y, Lewis JB, Wataha JC. Corrosion of phosphate-enriched titanium oxide surface dental implants (TiUnite®) under in vitro inflammatory and hyperglycemic conditions. J Biomed Mater Res B. 2010;92B:525–34.

    CAS  Google Scholar 

  46. Shi X, Xu L, Wang Q. Porous TiO2 film prepared by micro-arc oxidation and its electrochemical behaviors in Hank’s solution. Surf Coat Technol. 2010;205:1730–5.

    Article  CAS  Google Scholar 

  47. Scholtz F, editor. Electroanalytical methods: guide to experiments and applications. New York: Springer; 2010.

    Google Scholar 

  48. Robin A, Meirelis JP. Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva. J Appl Electrochem. 2007;37:511–7.

    Article  CAS  Google Scholar 

  49. Lausmaa J, Kasemo B, Hansson S. Accelerated oxide growth on titanium implants during autoclaving caused by fluorine contamination. Biomaterials. 1985;6:23–7.

    Article  CAS  Google Scholar 

  50. Horasawa N, Marek M. Effect of fluoride from glass ionomer on discoloration and corrosion of titanium. Acta Biomater. 2010;6:662–6.

    Article  CAS  Google Scholar 

  51. Popa MV, Vasilescu E, Drob P, Vasilescu C, Demetrescu I, Ionita D. Long-term assessment of the implant titanium material: artificial saliva interface. J Mater Sci Mater Med. 2008;19:1–9.

    Article  CAS  Google Scholar 

  52. Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE. Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem Commun. 2007;9:1222–7.

    Article  CAS  Google Scholar 

  53. Reclaru L, Meyer J-M. Study of corrosion between a titanium implant and dental alloys. J Dent. 1994;22:159–68.

    Article  CAS  Google Scholar 

  54. Anwar EM, Kheiralla LS, Tammam RH. Effect of fluoride on the corrosion behavior of Ti and Ti6Al4 V dental implants coupled with different superstructures. J Oral Implant. 2011;37:309–17.

    Article  Google Scholar 

  55. Tuna SH, Ozcicek Pekmez N, Keyf F, Canli F. The electrochemical properties of four dental casting suprastructure alloys coupled with titanium implants. J Appl Oral Sci. 2009;17:467–75.

    Article  CAS  Google Scholar 

  56. Fonseca C, Barbosa MA. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corros Sci. 2001;43:547–59.

    Article  CAS  Google Scholar 

  57. Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial. Clin Mater. 1992;9:115–34.

    Article  CAS  Google Scholar 

  58. Bozzini B, Carlino P, D’Urzo L, Pepe V, Mele C, Venturo F. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci Mater Med. 2008;19:3443–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Community of Madrid (Spain, S2009MAT-1585) for the financial support. R. Arrabal and E. Matykina are grateful to the MICINN (Spain) for financial support via the Ramon y Cajal Programme (RYC-2008-02038, RYC-2010-06749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Matykina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matykina, E., Arrabal, R., Mohedano, M. et al. Stability of plasma electrolytic oxidation coating on titanium in artificial saliva. J Mater Sci: Mater Med 24, 37–51 (2013). https://doi.org/10.1007/s10856-012-4787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4787-z

Keywords

Navigation