Skip to main content

Advertisement

Log in

Oxidative stress and antioxidant responses of liver and kidney tissue after implantation of titanium or titanium oxide coated plate in rat tibiae

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Coating with titanium oxides is a promising method to improve the blood compatibility of materials to be used for medical implants. However, biodegradation of the coating can result in microparticles that subsequently cause oxidative stress. Therefore, the present study was carried out to throw some light on the mechanisms affecting the reaction of tissue surroundings Ti implants either in the form of titanium oxide or not in tibiae of rats. The serum collected twice from animals during the period of study and rats were sacrificed after two months of implantation. The complete blood picture, total proteins content and the activities of some serum enzymes were determined as liver biomarker. Kidney function was examined by measuring the levels of serum creatinine and uric acid. The level of lipid peroxidation and the activities of superoxide dismutase, catalase and glutathione S-transferase as well as glutathione content in liver and kidney tissue were evaluated. It has been indicated that the lipid peroxidation is one of the molecular mechanisms involved in Ti-plate induced cytotoxicity however; the TiO2-plate did not. The biodegradation of Ti-plate was very slow that could explain why the all enzymatic and non-enzymatic antioxidant not affected by implantation of Ti-plate. The total antioxidant level in serum was better in rats had TiO2/Ti-plate than those animals that had Ti-plate. The coating of titanium implants with titanium oxide leads to attaining of reduced the oxidative state in the cells, which enhance the healing process in comparison with the uncoated implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander H, Brunski JB, Cooper SL, Hench LL, Hergenrother RW, Hoffman AS, Kohn J, Langer R, Peppas NA, Ratner BD, Shalaby SW, Visser SA, Yannas IV. Classes of materials used in medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science. An introduction to materials in medicine. New York, NY: Academic Press; 1996. p. 37–130.

    Google Scholar 

  2. Abramson S, Alexander H, Best S, Bokros JC, Brunski JB, Colas A, Cooper SL, Curtis J, Haubold A, Hench LL, Hergenrother RW, Hoffman AS, Hubbell JA, Jansen JA, King MW, Kohn J, Lamba MK, Langer R, Migliaresi C, More RB, Peppas NA, Ratner BD, Visser SA, von Recum A, Weinberg S, Yannas IV. Classes of materials used in medicine. In: Ratner B, Hoffman A, Schoen F, Lemons J, editors. Biomaterials science. An introduction to materials in medicine. San Diego: Elsevier; 2004. p. 67–233.

    Google Scholar 

  3. Wang W, Ouyang Y, Poh CK. Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singap. 2011;40:237–44.

    Google Scholar 

  4. Brånemark R, Brånemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev. 2001;38(2):175–81.

    Google Scholar 

  5. Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci. 2004;15(9):935–49.

    Article  CAS  Google Scholar 

  6. Balazic M, Kopac J, Jackson JM, Ahmed W. Review: titanium and titanium alloys in medicine. Int J Nano Biomater. 2007;1:3–34.

    Article  CAS  Google Scholar 

  7. Arcelli D, Palmieri A, Pezzetti F, Brunelli G, Zollino I, Carinci F. Genetic effect of titanium surface of osteoblasts: a meta-analysis. J Oral Sci. 2007;49(4):299–309.

    Article  CAS  Google Scholar 

  8. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1:30–42.

    Article  Google Scholar 

  9. Rigo ECS, Boschi AO, Yoshimoto M Jr, Allegrini S Jr, Konig B, Carbonari MJ. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants. Mater Sci Eng. 2004;C24:647–51.

    CAS  Google Scholar 

  10. Koklubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;13:2161–75.

    Article  Google Scholar 

  11. de Jonge LT, Leeuwenburgh SCG, van den Beucken JJJP, te Riet J, Daamen WF, Wolke JGC, Scharnweber D, Jansen JA. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials. 2010;31(9):2461–9.

    Article  Google Scholar 

  12. Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, Nishida N, Nakamura T, Kokubo T. Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011;7(3):1398–406.

    Article  CAS  Google Scholar 

  13. Olmedo DG, Duffó G, Cabrini RL, Guglielmotti MB. Local effect of titanium implant corrosion: an experimental study in rats. Int J Oral Maxillofac Surg. 2008;37(11):1032–8.

    Article  CAS  Google Scholar 

  14. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ. Koak JYImproved biological performanceof Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–75.

    Article  CAS  Google Scholar 

  15. Suzuki R, Muyco J, McKittrick J, Frangos JA. Reactive oxygen species inhibited by titanium oxide coatings. Wilmington: Wiley Periodicals Inc; 2002. p. 396–402.

    Google Scholar 

  16. Kasuga T. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films. 2006;496(1):141–5.

    Article  CAS  Google Scholar 

  17. Tsyganov I, Maitz MF, Wieserb E, Prokert F, Richter E, Rogozin A. Structure and properties of titanium oxide layers prepared by metal plasma immersion ion implantation and deposition. Surf Coat Technol. 2003;174–175:591–6.

    Article  Google Scholar 

  18. Mohsen Q, Fadl-allah SA, El-Shenawy NS. Electrochemical impedance spectroscopy study of the adsorption behavior of bovine serum albumin at biomimetic calcium – phosphate coating. Int J Electrochem. Sci. 2012;7:4510–27.

    CAS  Google Scholar 

  19. Peláez-Abellán E, Rocha-Sousa L, Müller WD, Guastaldi AC. Electrochemical stability of anodic titanium oxide films grown at potentials higher than 3 V in a simulated physiological solution. Corros Sci. 2007;49(3):1645–55.

    Article  Google Scholar 

  20. Saridhar TM, Rajeswari S. Biomaterial corrosion. Corros Rev. 2009;(27):287–332. ISSN (Online) 2191-0316, ISSN (Print) 0334-6005.

  21. Fouda MFA, Nemat A, Gawish A, Baiuomy AR. Does the coating of titanium implants by hydroxyapatite affect the elaboration of free radicals. An experimental study. Aust J Basic Appl Sci. 2009;3(2):1122–9.

    CAS  Google Scholar 

  22. Anderson JM. Host reactions to biomaterials and their evaluation: inflammation, wound healing, and the foreign body response. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterial science: an introduction of materials in medicine. New York: Academic Press; 1996. p. 165–73.

    Google Scholar 

  23. Thomsen P, Ericson LE. Inflammatory cell response to bone implant surfaces. In: Davies JE, editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1990. p. 153–64.

    Google Scholar 

  24. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun. 1993;18:195–9.

    Article  CAS  Google Scholar 

  25. Crow JP, Beckman JS. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharm. 1995;34:17–43.

    Article  CAS  Google Scholar 

  26. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;12:L699–722.

    Google Scholar 

  27. Cabrini RL, Guglielmotti MB, Almagro JC. Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent. 1993;2:264–7.

    Article  CAS  Google Scholar 

  28. Sanford HS. Method for obtaining venous blood from the orbital sinus of the rat or mouse. Science. 1954;119:100.

    Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  Google Scholar 

  30. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.

    CAS  Google Scholar 

  31. Beutler E. Red cell metabolism, a manual of biochemical methods. 3rd ed. New York: Grune and Startton; 1984. p. 133.

    Google Scholar 

  32. Alin P, Danielson UH, Mannervik B. 4-Hydroxyl-2 enals are substrates for glutathione transferase. FEBS Lett. 1985;179:267–70.

    Article  CAS  Google Scholar 

  33. Beutler E, Olga D, Kelly M. Improved method for determination of blood glutathione. From the department of medicine. J Lab Clin Med. 1963;61:882–8.

    CAS  Google Scholar 

  34. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol. 1999;299:15–27.

    Article  CAS  Google Scholar 

  35. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. Biodistribution of titanium dioxide from biologic compartments. J Mater Sci. 2008;19(9):3049–56.

    Article  CAS  Google Scholar 

  36. Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res. 2009;129(1–3):170–80.

    Article  CAS  Google Scholar 

  37. Zhang R, Niu Y, Li Y, Zhao C, Song B, Li Y, Zhou Y. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice. Environ Toxicol Pharmacol. 2010;30:52–60.

    Article  Google Scholar 

  38. Wazen RM, Lefebvre L-P, Baril E, Nanci A. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res Part B. 2010;94B:64–71.

    CAS  Google Scholar 

  39. Ohtsu N, Sato K, Yanagawa A, Saito K, Imai Y, Kohgo T, Yokoyama A, Asami K, Hanawa T. CaTiO3 coating on titanium for biomaterial application: optimum thickness and tissue response. J Biomed Mater Res Part A. 2007;82(2):304–15.

    Article  Google Scholar 

  40. Clark RAF. The molecular cellular biology of wound repair. 2nd ed. New Pork: Plenum Press; 1996.

    Google Scholar 

  41. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Ann Rev Pharmacol Toxicol. 1996;39:67–1010.

    Article  Google Scholar 

  42. Jozkowicz A, Qulak J, Nigisch A, Funovics P, Weigel G, Huk I, Malinaski T, et al. Involvement of nitric acid in angeogenic activities of vascular endothelial growth factor isoforms. Growth Factors. 2004;22:19–28.

    Article  CAS  Google Scholar 

  43. Sen CK. The general case for redox control in wound repair. Wound Repair Regen. 2003;11:431–8.

    Article  Google Scholar 

  44. Grajeda-Cota P, Ramirez-Mares MV, de Mejia EG. Vitamin C protects against in vitro cytotoxicity of cypermethrin in rat hepatocytes. Toxicol In Vitro. 2004;18(1):13–9.

    Article  CAS  Google Scholar 

  45. Wang J, Zhou G, Chen C, Yu H, Wang T, Mad Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168:176–85.

    Article  CAS  Google Scholar 

  46. Nakano Y, Beertsen W, van den Bos T, Kawamoto T, Oda K, Takano Y. Site-specific localization of two distinct phosphatases along the osteoblast plasma membrane: tissue non-specific alkaline phosphatase and plasma membrane calcium ATPase. Bone. 2004;35:1077–85.

    Article  CAS  Google Scholar 

  47. Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des. 2004;10:1611–26.

    Article  CAS  Google Scholar 

  48. Fadl-Allah SA, El-Sherief RA, Badawy WA. Electrochemical formation and characterization of porous titania (TiO2) films on Ti. J Appl Electrochem. 2008;38:1459–66.

    Article  CAS  Google Scholar 

  49. Tengvall P, Elwing H, Sjoqvist L, Lundstrom I, Bjursten L. Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials. 1989;10:118–20.

    Article  CAS  Google Scholar 

  50. Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neurooncol. 2000;50:139–48.

    Article  CAS  Google Scholar 

  51. Halliwell B. Antioxidant in human health and disease. Annu Rev Nutr. 1996;16:33–8.

    Article  CAS  Google Scholar 

  52. Banudevi S, Arunkumar A, Sharmila M, Senthilkumar J, Balasubramanian K, Srinivasan N, Aruldhas MM, Arunakaran J. Diallyl disulfide-induced modulation of a few phase I and II drug metabolizing enzymes on Aroclor 1254 toxicity in Rattus norvegicus liver and ventral prostate. J Clin Biochem Nutr. 2005;36:59–65.

    Article  CAS  Google Scholar 

  53. Fridovich I. Superoxide radical and superoxide dismutase. Acc Chem Res. 1972;5:321–3.

    Article  CAS  Google Scholar 

  54. Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153:83–104.

    Article  CAS  Google Scholar 

  55. Fouchecourt M, Riviere J. Activities of cytochrome P450-dependent monooxyganases and antioxidant enzymes in different organs of Norway rats (Rattus norvegicus) inhabiting reference and contaminated sites. Chemosphere. 1995;31:4375–86.

    Article  CAS  Google Scholar 

  56. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    CAS  Google Scholar 

  57. Mulder GJ, Adang AEP, Brussee J, Ketterer B, Meyer DJ, van der Gen A. The glutathione binding site of glutathione S-transferase isoenzymes from the rat: selectively towards tripeptide analogues of glutathione. Glutathione S-transferase and drug resistance. Great Britai: Taylor & Francis; 1990. p. 75.

    Google Scholar 

  58. De Leve L, Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther. 1991;52:287–305.

    Article  Google Scholar 

  59. Sugibayashi K, Todo H, Kimura E. Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. J Toxicol Sci. 2008;33:293–8.

    Article  CAS  Google Scholar 

  60. McGarry S, Morgan SJ, Grosskreuz RM, Williams AE, Smith WR. Serum titanium levels in individuals undergoing intramedullary femoral nailing with a titanium implant. J Trauma. 2008;64(2):430–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding source from Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Al-Read, Kingdom of Saudi Arabia. This study was parts of the Grant No. CR-12-2010.

Conflict of interest

The author declares that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahla S. El-Shenawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Shenawy, N.S., Mohsen, Q. & Fadl-allah, S.A. Oxidative stress and antioxidant responses of liver and kidney tissue after implantation of titanium or titanium oxide coated plate in rat tibiae. J Mater Sci: Mater Med 23, 1763–1774 (2012). https://doi.org/10.1007/s10856-012-4648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4648-9

Keywords

Navigation