Skip to main content
Log in

PAN hollow fiber membranes elicit functional hippocampal neuronal network

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bunge MB. Bridging areas of injury in the spinal cord. Neuroscientist. 2001;7(4):325–39.

    Article  CAS  Google Scholar 

  2. Vacanti MP, Leonard JL, Dore B, Bonassar LJ, Cao Y, Stachelek SJ, Vacanti JP, O’Connell F, Yu CS, Farwell AP, Vacanti CA. Tissue-engineered spinal cord. Transpl Proc. 2001;33(1–2):592–8.

    Article  CAS  Google Scholar 

  3. Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ. Fabrication of degradable polymer scaffold to direct the integration and differentiation of retinal progenitor. Biomaterials. 2005;26(16):3187–96.

    Article  CAS  Google Scholar 

  4. Levenberg S, Burdick JA, Kraehenbuehl T, Langer R. Neurotrophin induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng. 2005;11(3–4):506–12.

    Article  CAS  Google Scholar 

  5. Woerly S, Plant GW, Harvey AR. Neural tissue engineering: from polymer to biohybrid organs. Biomaterials. 1996;17(3):301–10.

    Article  CAS  Google Scholar 

  6. Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M. Freeze-dried poly(d, l-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials. 2004;25(9):1569–76.

    Article  CAS  Google Scholar 

  7. De Bartolo L., Rende M, Giusi G, Morelli S, Piscioneri A, Canonaco M, Drioli E. Membrane bio-hybrid systems: a valuable tool for the study of neuronal activities. In: Canonaco M, Facciolo RM, editors. Evolutionary molecular strategies and plasticity. Kerala, India. Research Signpost; 2007. p. 379-396.

  8. He Q, Zhang T, Yang Y, Ding F. In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons. J Mater Sci Mater Med. 2009;20:1457–66.

    Article  CAS  Google Scholar 

  9. De Bartolo L, Rende M, Morelli S, Giusi G, Salerno S, Piscioneri A, Gordano A, Di Vito A, Canonaco M, Drioli E. Influence of membrane surface properties n the growth of neuronal cells isolated from hippocampus. J Mem Sci. 2008;325:139–49.

    Article  Google Scholar 

  10. Giusi G, Facciolo RM, Rende M, Alò R, Di Vito A, Salerno S, Morelli S, De Bartolo L, Drioli E, Canonaco M. Distinct α subunits of the GABAA receptor are responsible for early hippocampal silent neuron-related activities. Hippocampus. 2009;19:1103–14.

    Article  CAS  Google Scholar 

  11. Morelli S, Salerno S, Piscioneri A, Papenburg BJ, Di Vito A, Giusi G, Canonaco M, Stamatialis D, Drioli E, De Bartolo L. Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites. Biomaterials. 2010;31(27):7000–11.

    Article  CAS  Google Scholar 

  12. Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol. 1995;134:261–72.

    Article  CAS  Google Scholar 

  13. Broadhead KW, Biran R, Tresco PA. Hollow fiber membrane diffusive permeability regulates encapsulated cell line biomass, proliferation, and small molecule release. Biomaterials. 2002;23(24):4689–99.

    Article  CAS  Google Scholar 

  14. Zhang N, Zhang C, Wen XJ. Fabrication of semipermeable hollow fiber membranes with highly aligned texture for nerve guidance. J Biomed Mater Res. 2005;75A:941–9.

    Article  CAS  Google Scholar 

  15. Ahlemeyer B, Baumgart-Vogt E. Optimized protocols for the simultaneous preparation of primary neuronal cultures of the neocortex, hippocampus and cerebellum from individual newborn (P0.5) C57Bl/6 J mice. J Neurosci Methods. 2005;149(2):110–20.

    Article  CAS  Google Scholar 

  16. Canonaco M, Madeo M, Alò R, Giusi G, Granata T, Carelli A, Canonaco A, Facciolo RM. The histaminergic signalling systems exerts a neuroprotective role against neurodegenerative-induced processes in the hamster. J Pharmacol Exp Ther. 2005;315(1):188–95.

    Article  CAS  Google Scholar 

  17. Dotti GC, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci. 1988;8:1454–68.

    CAS  Google Scholar 

  18. Fukata Y, Kimura T, Kaibuchi K. Axon specification in hippocampal neurons. Neurosci Res. 2002;43(4):305–15.

    Article  CAS  Google Scholar 

  19. Goslin K, Banker G. Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol. 1989;108:1507–16.

    Article  CAS  Google Scholar 

  20. Zhang HC, Chen TL, Yuan YG. Synthesis of new type polyether ether ketone with phthalein lateral group. CN Patent No. 85108751;1987.

  21. Tasselli F, Jansen JC, Sidari F, Drioli E. Morphology and transport property control of modified poly(ether ether ketone) (PEEK-WC) hollow fiber membranes prepared from PEEK-WC/PVP blends: influence of the relative humidity in the air gap. J Memb Sci. 2005;255:13–22.

    Article  CAS  Google Scholar 

  22. Mulder M. Transport in membranes. In: Mulder M, editor. Basic Principles of membrane technology. Dordrecht: Kluwer Academic Publishers; 1996. p. 210-279.

  23. Kimmerle K, Strathmann H. Analysis of the structure-determining process of phase inversion membranes. Desalination. 1990;79:283–302.

    Article  CAS  Google Scholar 

  24. De Bartolo L, Morelli S, Rende M, Gordano A, Drioli E. New modified polyetheretherketone membrane for liver cell culture in biohybrid systems: adhesion and specific functions of isolated hepatocytes. Biomaterials. 2004;25:3621–9.

    Article  Google Scholar 

  25. De Bartolo L, Piscioneri A, Cotroneo G, Salerno S, Tasselli F, Campana C, Morelli S, Rende M, Caroleo MC, Bossio M, Drioli E. Human lymphocyte PEEK-WC hollow fiber membrane bioreactor. J Biotechnol. 2007;132:65–74.

    Article  Google Scholar 

  26. Klinkmann H, Vienken J. Membranes for dialysis. Nephrol Dial Transplant. 1995;10(3):39–45.

    Google Scholar 

  27. Jenq CB, Jenq LL, Coggeshall RE. Nerve regeneration changes with filters of different pore size. Exp Neurol. 1987;97(3):662–71.

    Article  CAS  Google Scholar 

  28. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317.

    Article  CAS  Google Scholar 

  29. Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996;19:514–20.

    Article  CAS  Google Scholar 

  30. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989;341:149–52.

    Article  CAS  Google Scholar 

  31. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318.

    Article  CAS  Google Scholar 

  32. Gartner A, Polnau DG, Staiger V, Sciarretta C, Minichiello L, Thoenen H, Bonhoeffer T, Korte M. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cγ signalling. J Neurosci. 2006;26(13):3496–504.

    Article  Google Scholar 

  33. Grooms SY, Regis R, Noh KM, Bassel GJ, Regis R, Bryan MK, Carroll RC, Zukin R. Suzanne activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurone. J Neurosci. 2006;26:8339–51.

    Article  CAS  Google Scholar 

  34. Geremia NM, Pettersson LME, Hasmatali JC, Hryciw T, Danielsen N, Schreyer DJ, Verge VMK. Endogenous BDNF regulates induction of intrinsic neuronal growth programs in injured sensory neurons. Exp Neurol. 2010;223:128–42.

    Article  CAS  Google Scholar 

  35. Bellamkonda R, Aebischer P. Tissue engineering in the nervous system. In: Bronzino JD, editor. The biomedical engineering handbook, 2nd ed. Boca Raton: CRC Press, IEEE Press; 1995. p. 1754–73.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, S., Piscioneri, A., Salerno, S. et al. PAN hollow fiber membranes elicit functional hippocampal neuronal network. J Mater Sci: Mater Med 23, 149–156 (2012). https://doi.org/10.1007/s10856-011-4484-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4484-3

Keywords

Navigation