Skip to main content

Advertisement

Log in

Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 14 June 2011

Abstract

In the present study, we report enhanced antimicrobial properties of 29 and 23 nm silver nanoparticles (Ag NPs) obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Antibacterial activity assessed by disk diffusion method indicates that silver nanoparticles produced inhibition zones for both Escherichia coli and Staphylococcus aureus depending on silver concentration. The bacterial growth curve performed in the presence of silver nanoparticles showed a stronger antibacterial effect at lower concentrations than those described in the earlier reports. The effect was both dose and size dependent and was more pronounced against Gram negative bacteria than Gram positive one. The smallest Ag NPs used had a bactericidal effect resulting in killing E. coli cells. Scanning electron microscopy analysis indicated major damage and morphology changes of the silver nanoparticles treated bacterial cells. The major mechanism responsible for the antibacterial effect probably consists in clusters formation and nanoparticles anchorage to the bacterial cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002..

    Article  CAS  Google Scholar 

  2. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol Biol Med. 2007;3(1):95–101.

    Article  CAS  Google Scholar 

  3. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–20. doi:10.1128/aem.02218-06.

    Article  CAS  Google Scholar 

  4. Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18(28):285604.

    Article  Google Scholar 

  5. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi:10.1088/0957-4484/18/22/225103.

    Article  Google Scholar 

  6. Duran N, Marcarto PD, De Souza GIH, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3:203–8.

    Article  CAS  Google Scholar 

  7. Egorova EM, Revina AA, Rostovshchikova TN, Kiseleva OI. Bactericidal and catalytic properties of stable metal nanoparticles in reverse micelles. Vestn Mosk Univ Ser 2 Khim. 2001;42(5):332–8.

    CAS  Google Scholar 

  8. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–53. doi:10.1088/0957-4484/16/10/059.

    Article  CAS  Google Scholar 

  9. Martínez-Castañón G, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–8.

    Article  Google Scholar 

  10. Zhao GJ, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11(1):27–32.

    Article  CAS  Google Scholar 

  11. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, et al. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules. 2007;8(4):1246–54. doi:10.1021/bm060721b.

    Article  CAS  Google Scholar 

  12. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J. 2007;4(2):114–22. doi:10.1111/j.1742-481X.2007.00316.x.

    Article  Google Scholar 

  13. Tang SC, Tang YF, Gao F, Liu ZG, Meng XK. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres. Nanotechnology. 2007;18(29):295607. doi:10.1088/0957-4484/18/29/295607.

    Article  Google Scholar 

  14. Melnig V, Pohoata V, Obreja L, Garlea A, Cazacu M. Water-soluble polyamidhydroxyuretane swelling behaviour. J Optoelectron Adv Mater. 2006;8:1040–3.

    CAS  Google Scholar 

  15. Obreja L, Dorohoi DH, Melnig V, Foca N, Nastuta A. Poly(amidehydroxyurethane) templated Fe3O4 and Ag nanoparticles galvanostatic assay synthesis. Mater Plast. 2008;3(45):261–4.

    Google Scholar 

  16. Riddick TM. Control of colloid stability through zeta-potential. New York: Livingston Publishing Co; 1968.

    Google Scholar 

  17. Lorian V. Antibiotics in laboratory medicine. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  18. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18(17):6679–86.

    Article  CAS  Google Scholar 

  19. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51. doi:10.1007/s11051-010-9900-y.

    Article  CAS  Google Scholar 

  20. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  Google Scholar 

  21. Cho K-H, Park J-E, Osaka T, Park S-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005;51(5):956–60.

    Article  CAS  Google Scholar 

  22. Tortora J, Case CL, Funke BR. Microbiology: an introduction. 7th ed. San Francisco: Benjamin Cummings; 2002.

    Google Scholar 

  23. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, et al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control. 2004;32(8):445–50. doi:10.1016/S0196655304004742.

    Article  Google Scholar 

  24. Panácek A, Kolár M, Vecerová R, Prucek R, Soukupová J, Krystof V, et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30(31):6333–40.

    Article  Google Scholar 

  25. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5(4):916–24. doi:10.1021/Pr0504079.

    Article  CAS  Google Scholar 

  26. Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21(21):9651–9. doi:10.1021/la0513306.

    Article  CAS  Google Scholar 

  27. Thiel J, Pakstis L, Buzby S, Raffi M, Ni C, Pochan DJ, et al. Antibacterial properties of silver-doped titania13. Small. 2007;3(5):799–803.

    Article  CAS  Google Scholar 

  28. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 2008;112(15):5825–34. doi:10.1021/jp711616v.

    Article  CAS  Google Scholar 

  29. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 2003;69(7):4278–81. doi:10.1128/Aem.69.7.4278-4281.2003.

    Article  CAS  Google Scholar 

  30. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–9. doi:10.1093/toxsci/kfi256.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by CNCSIS–UEFISCSU, 509 PNII–IDEI 1996/2008 research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Marius.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10856-011-4360-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marius, S., Lucian, H., Marius, M. et al. Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. J Mater Sci: Mater Med 22, 789–796 (2011). https://doi.org/10.1007/s10856-011-4281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4281-z

Keywords

Navigation