Skip to main content

Advertisement

Log in

Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The influence of magnesium- and strontium-substitutions on injectability and mechanical performance of brushite-forming α-TCP cements has been evaluated in the present work. The effects of Mg- and Sr-substitutions on crystalline phase composition and lattice parameters were determined through quantitative X-ray phase analysis and structural Rietveld refinement of the starting calcium phosphate powders and of the hardened cements. A noticeable dependence of injectability on the liquid-to-powder ratio (LPR), smooth plots of extrusion force versus syringe plunger displacement and the absence of filter pressing effects were observed. For LPR values up to 0.36 ml g−1, the percentage of injectability was always higher and lower for Mg-containing cements and for Sr-containing cements, respectively, while all the pastes could be fully injected for LPR > 0.36 ml g−1. The hardened cements exhibited relatively high wet compressive strength values (~17–25 MPa) being the Sr- and Mg-containing cements the strongest and the weakest, respectively, holding an interesting promise for uses in trauma surgery such as for filling bone defects and in minimally invasive techniques such as percutaneous vertebroplasty to fill lesions and strengthen the osteoporotic bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gbureck U, Vorndran E, Muller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122:173–80.

    Article  CAS  PubMed  Google Scholar 

  2. Metallidis S, Topsis D, Nikolaidis J, Alexiadou E, Lazaraki G, Grovaris L, et al. Penetration of moxifloxacin and levofloxacin into cancellous and cortical bone in patients undergoing total hip arthroplasty. J Chemother. 2007;19:682–7.

    CAS  PubMed  Google Scholar 

  3. Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17:3980–6.

    Article  CAS  Google Scholar 

  4. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez E. Bioactive bone cements. Wiley Encyclopaedia of Biomedical Engineering. New York: Wiley; 2006.

    Google Scholar 

  6. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Inj-Intern Care Injur. 2000;31:37–47.

    Google Scholar 

  7. Dorozhkin SV. Calcium orthophosphates. J Mater Sci. 2007;42:1061–95.

    Article  CAS  ADS  Google Scholar 

  8. Brown WE, Chow LC. A new calcium-phosphate setting cement. J Dent Res. 1983;62:672.

    Google Scholar 

  9. Wang XP, Ye JD, Wang H. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material. J Biomed Mater Res Appl Biomater. 2006;78:259–64.

    Google Scholar 

  10. Yuan HP, Li YB, de Bruijn JD, de Groot K, Zhang XD. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials. 2000;21:1283–90.

    Article  CAS  PubMed  Google Scholar 

  11. Alves HLR, dos Santos LA, Bergmann CP. Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med. 2008;19:2241–6.

    Article  CAS  PubMed  Google Scholar 

  12. Baroud G, Cayer E, Bohner M. Rheological characterization of concentrated aqueous á-tricalcium phosphate suspensions: the effect of liquid-to-powder ratio, milling time, and additives. Acta Biomater. 2005;1:357–63.

    Article  CAS  PubMed  Google Scholar 

  13. Boesel L, Reis RL. The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Biomaterials. 2006;27:5627–33.

    Article  CAS  PubMed  Google Scholar 

  14. Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.

    Article  CAS  PubMed  Google Scholar 

  15. Burguera EF, Xu HHK, Sun LM. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J Biomed Mater Res Appl Biomater. 2008;84:493–502.

    Google Scholar 

  16. Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26:5444–53.

    Article  CAS  PubMed  Google Scholar 

  17. Baroud G, Wu JZ, Bohner M, Sponagel S, Steffen T. How to determine the permeability for cement infiltration of osteoporotic cancellous bone. Med Eng Phys. 2003;25:283–8.

    Article  CAS  PubMed  Google Scholar 

  18. Khairoun I, Boltong MG, Driessens FCM, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med. 1998;9:425–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bai B, Jazrawi LM, Kummer FJ, Spivak JM. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine. 1999;24:1521–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ginebra MP, Rilliard A, Fernandez E, Elvira C, San Roman J, Planell JA. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res. 2001;57:113–8.

    Article  CAS  PubMed  Google Scholar 

  21. Sarda S, Fernandez E, Nilsson M, Balcells M, Planell JA. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res. 2002;61:653–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gbureck U, Barralet JE, Spatz K, Grover LM, Thull R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004;25:2187–95.

    Article  CAS  PubMed  Google Scholar 

  23. Habib M, Baroud G, Gitzhofer F, Bohner M. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 2008;4:1465–71.

    Article  CAS  PubMed  Google Scholar 

  24. Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials. 2004;25:2197–203.

    Article  CAS  PubMed  Google Scholar 

  25. Sarda S, Fernandez E, Llorens J, Martinez S, Nilsson M, Planell JA. Rheological properties of an apatitic bone cement during initial setting. J Mater Sci Mater Med. 2001;12:905–9.

    Article  CAS  PubMed  Google Scholar 

  26. Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25:31–4.

    Article  Google Scholar 

  27. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N. Isomorphous substitutions in beta-tricalcium phosphate: the different effects of zinc and strontium. J Inorg Biochem. 1997;66:259–65.

    Article  CAS  Google Scholar 

  28. Kannan S, Lemos AF, Rocha JHG, Ferreira JMF. Characterization and mechanical performance of the Mg-stabilized á-Ca 3 (PO 4) 2 prepared from Mg-substituted Ca-deficient apatite. J Am Ceram Soc. 2006;89:2757–61.

    Article  CAS  Google Scholar 

  29. Kannan S, Lemos IAF, Rocha JHG, Ferreira JMF. Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/beta-tricalcium phosphate ratios. J Solid State Chem. 2005;178:3190–6.

    Article  CAS  ADS  Google Scholar 

  30. Kannan S, Pina S, Ferreira JMF. Formation of strontium-stabilized á-tricalcium phosphate from calcium-deficient apatite. J Am Ceram Soc. 2006;89:3277–80.

    Article  CAS  Google Scholar 

  31. Kannan S, Rocha JHG, Ferreira JMF. Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites. J Mater Chem. 2006;16:286–91.

    Article  CAS  Google Scholar 

  32. Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP. Synthesis and structure of magnesium-substituted hydroxyapatite 1. Inorg Mater. 2003;39:947–50.

    Article  CAS  Google Scholar 

  33. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials. 2004;25:4647–57.

    Article  CAS  PubMed  Google Scholar 

  34. Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med. 2005;16:455–60.

    Article  CAS  PubMed  Google Scholar 

  35. Rokita E, Hermes C, Nolting HF, Ryczek J. Substitution of calcium by strontium within selected calcium phosphates. J Cryst Growth. 1993;130:543–52.

    Article  CAS  ADS  Google Scholar 

  36. Pina S, Olhero SM, Gheduzzi S, Miles AW, Ferreira JMF. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomater. 2009;5:1233–40.

    Article  CAS  PubMed  Google Scholar 

  37. Mathew M, Schroeder LW, Dickens B, Brown WE. Crystal structure of alpha-Ca3(PO4)2. Acta Crys: Struct Commun. 1977;33:1325–33.

  38. Yashima M, Sakai A, Kamiyama T, Hoshikawa A. Crystal structure analysis of beta-tricalcium phosphate Ca-3(PO4)(2) by neutron powder diffraction. J Sol St Chem. 2003;175:272–7.

    Google Scholar 

  39. Curry NA, Jones DW. Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate – neutron-diffraction investigation. J Chem Soc. 1971;23:3725–9.

    Google Scholar 

  40. Xu HHK, Weir MD, Burguera EF, Fraser AM. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials. 2006;27:4279–87.

    Article  CAS  PubMed  Google Scholar 

  41. Lemos AF, Ferreira JMF. Combining foaming and starch consolidation methods to develop macroporous hydroxyapatite implants. Bioceram. 2004;254:1041–4.

    Google Scholar 

  42. Bohner M, Gbureck U. Thermal reactions of brushite cements. J Biomed Mater Res Appl Biomater. 2008;84:375–85.

    CAS  Google Scholar 

  43. Olhero SM, Ferreira JMF. Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol. 2004;139:69–75.

    Article  CAS  Google Scholar 

  44. Mezger TG. The rheology handbook: for users of rotational and oscillation rheometers. Hannover: Vicentz Verlag; 2002.

    Google Scholar 

  45. Alkhralsat MH, Marino FT, Rodriguez CR, Jerez LB, Cabarcos EL. Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomater. 2008;4:664–70.

    Article  Google Scholar 

  46. TenHuisen KS, Brown PW. Effects of magnesium on the formation of calcium-deficient hydroxyapatite from CaHPO4·2H2O and Ca4(PO4)2O. J Biomed Mater Res. 1997;36:306–14.

    Article  CAS  PubMed  Google Scholar 

  47. Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, et al. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone. 1996;18:253–9.

    Article  CAS  PubMed  Google Scholar 

  48. Saint-Jean SJ, Camire CL, Nevsten P, Hansen S, Ginebra MP. Study of the reactivity and in vitro bioactivity of Sr-substituted à-TCP cements. J Mater Sci Mater Med. 2005;16:993–1001.

    Article  CAS  PubMed  Google Scholar 

  49. Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promoters to calcium phosphate cements. Biomaterials. 1999;20:393–8.

    Article  CAS  PubMed  Google Scholar 

  50. Duck FA. Physical properties of tissue: a comprehensive reference book. London: Academic Press Limited; 1990.

    Google Scholar 

Download references

Acknowledgments

Thanks are due to CICECO for the support and to the Portuguese Foundation for Science and Technology for the fellowship grant of S. Pina (SFRH/BD/21761/2005). The first author is grateful to C. Stabler, from Institute of Mineralogie, University of Erlangen-Nuremberg, Germany, for his valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pina, S., Torres, P.M.C. & Ferreira, J.M.F. Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. J Mater Sci: Mater Med 21, 431–438 (2010). https://doi.org/10.1007/s10856-009-3890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3890-2

Keywords

Navigation