Skip to main content

Advertisement

Log in

Microporosity enhances bioactivity of synthetic bone graft substitutes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper describes an investigation into the influence of microporosity on early osseointegration and final bone volume within porous hydroxyapatite (HA) bone graft substitutes (BGS). Four paired grades of BGS were studied, two (HA70-1 and HA70-2) with a nominal total porosity of 70% and two (HA80-1 and HA80-2) with a total-porosity of 80%. Within each of the total-porosity paired grades the nominal volume fraction of microporosity within the HA struts was varied such that the strut porosity of HA70-1 and HA80-1 was 10% while the strut-porosity of HA70-2 and HA80-2 was 20%. Cylindrical specimens, 4.5 mm diameter × 6.5 mm length, were implanted in the femoral condyle of 6 month New Zealand White rabbits and retrieved for histological, histomorphometric, and mechanical analysis at 1, 3, 12 and 24 weeks. Histological observations demonstrated variation in the degree of capillary penetration at 1 week and bone morphology within scaffolds 3–24 weeks. Moreover, histomorphometry demonstrated a significant increase in bone volume within 20% strut-porosity scaffolds at 3 weeks and that the mineral apposition rate within these scaffolds over the 1–2 week period was significantly higher. However, an elevated level of bone volume was only maintained at 24 weeks in HA80-2 and there was no significant difference in bone volume at either 12 or 24 weeks for 70% total-porosity scaffolds. The results of mechanical testing suggested that this disparity in behaviour between 70 and 80% total-porosity scaffolds may have reflected variations in scaffold mechanics and the degree of reinforcement conferred to the bone-BGS composite once fully integrated. Together these results indicate that manipulation of the levels of microporosity within a BGS can be used to accelerate osseointegration and elevate the equilibrium volume of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clinica Reports 2002, Orthopaedics:Key markets & emerging technologies, CBS905E.

  2. J. J. KLAWITTER and S. F. HULBERT, J. Biomed Mater. Res. 5 (1971) 161.

    Article  Google Scholar 

  3. P. S. EGGLI, W. MULLER and R. K. SCHENK, Clin. Orthop. Relat. Res. 232 (1988) 127.

    CAS  PubMed  Google Scholar 

  4. K. A. HING, S. M. BEST, K. E. TANNER, W. BONFIELD and P. A. REVELL, J. Biomed. Mater. Res. 68A (2004) 187.

    Article  CAS  Google Scholar 

  5. R. E HOLMES, V. MOONEY, R. BUCHOLZ and A. TENCER, Clin. Orthop. Rel. Res. 188 (1984) 252.

    Google Scholar 

  6. J. J. KLAWITTER, J. G. BAGWELL, A. M. WEINSTEIN, B. W. SAUER and J. R. PRUITT, J. Biomed. Mater. Res. 10 (1976) 311.

    Article  CAS  PubMed  Google Scholar 

  7. J. H. KÚHNE, R. BARTL, B. FRISH, C. HANMER, V. JANSSON and M. ZIMMER, Acta Orthop. Scand. 65(3) (1994) 246.

    PubMed  Google Scholar 

  8. P. A. RUBIN, J. K. POPHAM, J. R. BILYK and J. W. SHORE, Ophthal. Plast. Reconstr. Surg. 10(2) (1994) 96.

    CAS  PubMed  Google Scholar 

  9. K. L. KILPADI, A. A. SAWYER, C. W. PRINCE, P. L. CHANG and S. L. BELLIS, J. Biomed. Mater. Res. 68A(2) (2004) 273.

    Article  CAS  Google Scholar 

  10. J. WOLFF, Virchows Arch. Path. Anat. Physiol. 50 (1870).

  11. H. M. FROST, Anat. Rec. 219(1) (1987) 1.

    Article  CAS  PubMed  Google Scholar 

  12. J. R. MAUNEY, S. SJOSTORM, J. BLUMBERG, R. HORAN, J. P. O’LEARY, G. VUNJAK-NOVAKOVIC, V. VOLLOCH and D. L. KAPLAN, Calcif. Tissue. Int. 74(5) (2004) 458.

    Article  CAS  PubMed  Google Scholar 

  13. B. ANNAZ, K. A. HING, M. V. KAYSER, T. BUCKLAND and L. DI SILVIO, J. Microscopy. 215(1) (2004) 100.

    Article  CAS  MathSciNet  Google Scholar 

  14. A. BIGNON, J. CHOUTEAU, J. CHEVALIER, G. FANTOZZI, J. P. CARRET, P. CHAVASSIEUX, G. BOIVIN, M. MELIN and D. HARTMANN, J. Mater. Sci. Mater. Med. 14(3) (2003)1089.

    Article  CAS  PubMed  Google Scholar 

  15. K. A. HING, S. SAEED, B. ANNAZ, T. BUCKLAND and P. A. REVELL, Key Engng. Mater. 254–256 (2004) 273.

    Google Scholar 

  16. A. BOYDE, A. CORSI, R. QUARTO, R. CANCEDDA and P. BIANCO, Bone 24(6) (1999) 579.

    Article  CAS  PubMed  Google Scholar 

  17. K. A. HING and W. BONFIELD, Foamed Ceramics, International Patent No. GB99/03283. (1999)

  18. K. A. HING and T. BUCKLAND, Ceramic Biomaterial, UK Patent application No. 03258.33.2 (2003).

  19. Powder diffraction file (PDF) 9-432, International centre for diffraction data, Newton Square Pensilvania USA

  20. K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 10(3) (1999) 135.

    Article  CAS  PubMed  Google Scholar 

  21. K. DONATH, J. Oral. Pathology 11 (1982) 318.

    CAS  Google Scholar 

  22. E. R. WEIBEL and H. E. ELIAS, in “Quantitative Methods in Morphology” (Springer-Verlag, Berlin 1967) p. 87.

    Google Scholar 

  23. K. A. HING, S. M. BEST, P. A. REVELL, K. E. TANNER and W. BONFIELD, Proc. Instn. Mech. Engrs. Part. H 212 (1998) 437.

    Article  CAS  Google Scholar 

  24. H. M. FROST in “Bone Histomorphometry” edited by P.J. Meunier (1976) p. 361.

  25. S. OHTSUBO, M. MATSUDA and M. TAKEKAWA, Histol Histopathol. 18(1) (2003) 153.

    CAS  PubMed  Google Scholar 

  26. J. A. O’CONNOR, L. E. LANYON and J. H. MACFIE, J. Biomech. 15 (1982) 767.

    Article  CAS  PubMed  Google Scholar 

  27. L. E. LANYON, A. E. GOODSHIP, C. J. PIE and J. H, ibid. 15(3) (1982) 141.

    Article  CAS  PubMed  Google Scholar 

  28. D. B. BURR, R. B. MARTIN, M. B. SCHAFFLER and E. L. RADIN, ibid. 18 (1985)189.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Hing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hing, K.A., Annaz, B., Saeed, S. et al. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci: Mater Med 16, 467–475 (2005). https://doi.org/10.1007/s10856-005-6988-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-6988-1

Keywords

Navigation