Skip to main content
Log in

Identifying of series resistance and interface states on rhenium/n-GaAs structures using CVT and G/ωVT characteristics in frequency ranged 50 kHz to 5 MHz

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 28 November 2019

This article has been updated

Abstract

In this study, Re/n-GaAs with a native oxide layer based on metal–semiconductor (MS) structures were produced and then, the capacitance–voltage–temperature (CVT) and the conductance–voltage–temperature (G/ωVT) data of them were obtained in the frequency ranged 50 kHz to 5 MHz. Using the raw data, the electronic parameters was calculated by the developed LabVIEW-based program. Methodologically, the series resistance (Rs) values were calculated from the measured capacitance (Cm) and conductivity (Gm) values, while the interface state (Nss) values were obtained from using the combined high (CHF)–low (CLF) frequency capacitance method by Nicollian and Brews. Experimentally, the C values increased with a decreasing frequency, while decreased with increasing temperatures in the depletion and accumulation regions. On the other hand, G/ω values decreased with increasing frequency in forward and reverse bias regions. It can be attributed that, the C and the G/ω values are quite affected by the presence of the Rs and the Nss in the forbidden energy gap and a native oxide layer between M and S. The RsVT curves have especially peaks in accumulation and depletion regions at low frequency values, whereas these peaks decreased at high frequencies. In addition, the NssVT curves give peaks in the range of − 0.1 V to 0.7 V at variable temperatures and the Nss values decrease with increasing temperature and shift towards negative bias regions. Experimental results indicate that the Rs and Nss are important parameters and so, these parameters must be considered in sensor applications based on Re/n-GaAs structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 28 November 2019

    The original version of the article inadvertently published without the character omega “ω” in all the places. This has been corrected by publishing this erratum. The original article has been corrected.

References

  1. E.H. Rhoderick, Metal-Semiconductor Contacts (Oxford University Press, Oxford, 1978)

    Google Scholar 

  2. K. Kano, Semiconductor Devices (Prentice-Hall, Upper Saddle River, 1998)

    Google Scholar 

  3. B. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  4. S.O. Tan, H. Tecimer, O. Çiçek, Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans. Electron Dev. 64(3), 984–990 (2017)

    Article  CAS  Google Scholar 

  5. H. Yang, J. Gao, H. Nakashima, Investigation of ZrGe Schottky source/drain contactsfor Ge p-channel MOSFETs. Mater. Sci. Semicond. Process. 26, 614–619 (2014)

    Article  CAS  Google Scholar 

  6. D.B. Patel, K.R. Chauhan, S.-H. Park, J. Kim, High-performing transparent photodetectors based on Schottky contacts. Mater. Sci. Semicond. Process. 64, 137–142 (2017)

    Article  CAS  Google Scholar 

  7. A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor system. J. Appl. Phys. 36(10), 3212 (1965)

    Article  CAS  Google Scholar 

  8. S.-W. Kim, S.-H. Kim, G.-S. Kim, C. Choi, R. Choi, H.-Y. Yu, The Effect of interfacial dipoles on the metal-double interlayers-semiconductor structure and their application in contact resistivity reduction. ACS Appl. Mater. Interfaces. 8, 35614–35620 (2016)

    Article  CAS  Google Scholar 

  9. Ç. Güçlü, A. Özdemir, A. Karabulut, A. Kökce, Ş. Altındal, Investigation of temperature dependent negative capacitance in the forwardbias C–V characteristics of (Au/Ti)/Al2O3/n-GaAs Schottky barrier diodes (SBDs). Mater. Sci. Semicond. Process. 89, 26–31 (2019)

    Article  Google Scholar 

  10. O. Çiçek, S. Kurnaz, A. Bekar, Ö. Öztürk, Comparative investigation on electronic properties of metal-semiconductor structures with variable ZnO thin film thickness for sensor applications. Composites B 174, 106987 (2019)

    Article  Google Scholar 

  11. S. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J. Mater. Sci.: Mater. Electron. 27(8), 8340–8347 (2017)

    Google Scholar 

  12. H. Durmuş, H.Ş. Kılıç, S.Y. Gezgin, Ş. Karataş, Analysis of current–voltage–temperature and capacitance–voltage–temperature characteristics of Re/n-Si Schottky contacts. Silicon 10, 361–369 (2018)

    Article  Google Scholar 

  13. A. Buyukbas-Ulusan, I. Taşçıoğlu, A. Tataroğlu, F. Yakuphanoğlu, S. Altındal, A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures. J. Mater. Sci.: Mater. Electron. 30(13), 12122–12129 (2019)

    CAS  Google Scholar 

  14. E. Erbilen Tanrıkulu, Ş. Altındal, Y. Azizian-Kalandaragh, Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci.: Mater. Electron. 29(14), 11801–11811 (2018)

    Google Scholar 

  15. E. Nicollian, J. Brews, MOS(Metal Oxide Semiconductor Physics and Technology) (Bell Telephone Laboratories, Incorporated, Canada, 1982)

    Google Scholar 

  16. E. Nicollian, A. Goetzberger, The Si–SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Technol. J. 46(6), 1055–1133 (1967)

    Article  CAS  Google Scholar 

  17. I. Taşçıoğlu, S. Tan, Ş. Altındal, Frequency, voltage and illumination interaction with the electrical characteristics of the CdZnO interlayered Schottky structure. J. Mater. Sci.: Mater. Electron. 30(12), 11536–11541 (2019)

    Google Scholar 

  18. S. Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, The structural and electrical properties of the Au/n-Si (MS) diodes with nanocomposites interlayer (Ag-doped ZnO/PVP) by using the simple ultrasound-assisted method. IEEE Trans. Electron Dev. 66(7), 3103–3109 (2019)

    Article  Google Scholar 

  19. D. Korucu, Ş. Altindal, T.S. Mammadov, S. Özçelik, Origin of anomalous peak and negative capacitance in the forward bias CV characteristics of Au/n-InP Schottky barier diodes (SBDs). J. Optoelectron. Adv. Mater. 11(2), 192–196 (2009)

    CAS  Google Scholar 

  20. H. Durmuş, M. Yıldırım, Ş. Altındal, On the possible conduction mechanisms in Rhenium/n–GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01233-z

    Article  Google Scholar 

  21. O. Çiçek, S. Kurnaz, LabVIEW based a software system: quantitative determination of main electronic parameters for Schottky junction structures. Balk. J. Electr. Comput. Eng. 7(3), 326–331 (2019)

    Article  Google Scholar 

  22. D. Sands, K. Brunson, M. Tayarani-Najaran, Measured intrinsic defect density throughout the entire band gap at the 〈100〉 Si/SiO2 interface. Semicond. Sci. Technol. 7(8), 1091–1096 (1992)

    Article  CAS  Google Scholar 

  23. P. Ho, E. Yang, H. Evans, X. Wu, Phys. Rev. Lett. 60, 177–180 (1986)

    Article  Google Scholar 

  24. Ş. Altındal, H. Uslu, J. Appl. Phys. 109, 074503 (2011)

    Article  Google Scholar 

  25. J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53–56 (1988)

    Article  CAS  Google Scholar 

  26. X. Wu, E.S. Yang, J. Appl. Phys. 65, 3560 (1989)

    Article  Google Scholar 

  27. P. Chattopadhyay, B. Raychaudhuri, Solid State Electron. 35, 875 (1992)

    Article  Google Scholar 

  28. M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, IEEE Trans. Electron. Dev. 45, 2196–2206 (1998)

    Article  Google Scholar 

  29. E. Arslan, Y. Şafak, Ş. Altındal, Ö. Kelekçi, E. Özbay, Non-Cryst. Solids 356, 1006–1011 (2010)

    Article  CAS  Google Scholar 

  30. D. Korucu, A. Turut, S. Altındal, Curr. Appl. Phys. 13(6), 1101–1108 (2013)

    Article  Google Scholar 

  31. S. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  32. A. Sing, K. Reinhart, W. Anderson, Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions. J. Appl. Phys. 68(7), 3475–3484 (1990)

    Article  Google Scholar 

  33. P. Chattopadhyay, B. Raychaudhuri, Frequency dependence of forward capacitance–voltage characteristics of Schottky barrier diodes. Solid-State Electron 36(4), 605–610 (1993)

    Article  CAS  Google Scholar 

  34. H. Card, E. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589–1601 (1971)

    Article  CAS  Google Scholar 

  35. Keithley, C–V Characterization of MOS Capacitors Using the Model 4200-SCS Semiconductor Characterization System (Keithley Instruments, Inc., Cleveland, 2007)

    Google Scholar 

  36. R. Castange, A. Vapaille, Description of the SiO2–Si interface properties by means of very low frequency MOS capacitance. Surf. Sci. 28, 157–193 (1971)

    Article  Google Scholar 

  37. K. Kwa, S. Chattopadhyay, N. Jankovic, S. Olsen, L. Driscoll, A. O’Neill, A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics. Semicond. Sci. Technol. 18, 82–87 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Çiçek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to the error in displaying omega symbol in all the pages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiçek, O., Durmuş, H. & Altındal, Ş. Identifying of series resistance and interface states on rhenium/n-GaAs structures using CVT and G/ωVT characteristics in frequency ranged 50 kHz to 5 MHz. J Mater Sci: Mater Electron 31, 704–713 (2020). https://doi.org/10.1007/s10854-019-02578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02578-1

Navigation