Skip to main content
Log in

Charge correlation of ferroelectric and piezoelectric properties of (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 lead-free ceramic solid solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single phased lead-free (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 (x = 0.00, 0.04, 0.08 and 0.12) ((1 − x)NBT–xBT) ceramics were synthesized by the solid-state reaction method. The powder X-ray diffraction patterns and profile refinements revealed that, for 0.04 < x < 0.08, the prepared ceramics have been crystallized in morphotropic phase boundary between rhombohedral to tetragonal structures. The charge distribution and bonding behaviour in (1 − x)NBT–xBT unit cell were completely analyzed through charge density distribution studies. UV–visible analysis reveals that, the optical band gap energy of the solid solution increases with addition of BaTiO3 content. The surface morphology and elemental compositions for the sintered powders were analyzed through scanning electron microscopy and energy dispersive X-ray studies. Electrical measurements on the solid solutions showed that the maximum values of the dielectric constant, the remnant polarization and the piezoelectric coefficient are reached at near (x = 0.08) the morphotropic phase boundary (ε = 4070 at 100 kHz; P r = 18.92 µC/cm2; d 33  = 122 pC/N). Thus, the (1 − x)NBT–xBT system is expected to be a promising candidate for lead-free piezoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  2. J. Shi, H. Fan, X. Liu, Y. Ma, Q. Li, J. Alloy. Compd. 627, 463 (2015)

    Article  Google Scholar 

  3. Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, M. Cao, Z. Yao, H. Liu, J. Eur. Ceram. Soc. 35, 545 (2015)

    Article  Google Scholar 

  4. Y. Zhao, H. Fan, G. Dong, Z. Liu, Mater. Lett. 174, 242 (2016)

    Article  Google Scholar 

  5. Z. Liu, H. Fan, S. Lei, J. Wang, H. Tian, Appl. Phys. A 122(10), 900 (2016)

    Article  Google Scholar 

  6. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State (Engl. Transl.) 2, 2651 (1961)

    Google Scholar 

  7. X.-C. Zheng, G.-P. Zheng, Z. Lin, Z.-Y. Jiang, Ceram. Int. 39, 1233 (2013)

    Article  Google Scholar 

  8. J.H. Cho, Y.H. Jeong, J.H. Nam, J.S. Yun, Y. J. Park, Ceram. Int. 40, 8419 (2014)

    Article  Google Scholar 

  9. G. Dong, H. Fan, J. Shi, M. Li, J. Am. Ceram. Soc. 98(4), 1150 (2015)

    Article  Google Scholar 

  10. M. Acosta, W. Jo, J. Rodel, J. Am. Ceram. Soc. 97(6), 1937 (2014)

    Article  Google Scholar 

  11. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236 (1991)

    Article  Google Scholar 

  12. T. Takenaka, T. Okuda, K. Takegahara, Ferroelectrics 196, 175 (1997)

  13. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  Google Scholar 

  14. O. Elkechai, M. Manier, J.P. Mercurio, Phys. Status Solid (a). 157, 499 (1996)

    Article  Google Scholar 

  15. E.V. Ramana, B.V. Saradhi, S.V. Suryanarayana, T. Bhimasankaram, Ferroelectrics 324, 55 (2005)

    Article  Google Scholar 

  16. R.E. Cohen, J. Phys. Chem. Solid 61, 139 (2000)

    Article  Google Scholar 

  17. D.M. Collins, Nature 49, 298 (1982)

    Google Scholar 

  18. Y. Qu, D. Shan, J. Song, Mater. Sci. Eng. B121, 148 (2005)

    Article  Google Scholar 

  19. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  Google Scholar 

  20. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  21. V. Petricek, M. Dusek, Palatinus, Jana, the crystallographic computing system (Institute of Physics), Praha, Czech Republic (2006)

  22. D.L. Wood, J. Tauc, Phys. Rev. B5, 3144 (1972)

    Article  Google Scholar 

  23. S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay, S. Chattopadhyay, A. Sarkar, Phys. B 404, 1509 (2009)

    Article  Google Scholar 

  24. S. Sridevi, K. Subrat Kumar, K. Pawan, Ceram. Int. 41(9), 10710 (2015)

    Article  Google Scholar 

  25. K. Bhattacharya, G. Ravichandran, Acta Mater. 51, 5941 (2003)

    Article  Google Scholar 

  26. C. Xu, D. Lin, K.W. Kwok, Solid State Sci. 10, 934 (2008)

    Article  Google Scholar 

  27. K. Momma, F. Izumi, Comm. Crystallogr. Comput. IUCr Newslett. 7, 106 (2006)

    Google Scholar 

  28. S. Tripathy, K. Mishra, S. Sen and D. Pradhan, J. Am. Ceram. Soc. 97(6), 1846 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors S. Sasikumar and R. Saravanan are thankful to Naval Research Board of DRDO for providing Grant in research project (No. NRB/DRDO/MAT/269). The authors S. Sasikumar and R. Saravanan would like to express their special thanks Dr. T. Mukundan, Material Science Division and Dr. R. Ramesh, Transducers division, NPOL, Cochin. The authors acknowledge the MHRD, Government of India for the multiferroic tester facility under the plan fund sanctioned to the Department of Physics, NIT, Tiruchirappalli. Also, the authors thank to SAIF (Sophisticated Analytical Instrument Facility), CUSAT, Cochin for the PXRD measurements. The authorities of The Madura College, Madurai – 625 011, Tamil Nadu, India are gratefully acknowledged for their constant encouragement of the research activities of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sasikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasikumar, S., Saravanan, R., Saravanakumar, S. et al. Charge correlation of ferroelectric and piezoelectric properties of (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 lead-free ceramic solid solution. J Mater Sci: Mater Electron 28, 9950–9963 (2017). https://doi.org/10.1007/s10854-017-6753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6753-5

Keywords

Navigation