Skip to main content
Log in

Effect of substrate temperature on (00l) oriented growth of ZnO nanostructures on fused quartz substrate by PLD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and novel catalyst free (00l) oriented zinc oxide (ZnO) nano-structures were synthesized on quartz substrate by pulsed laser deposition (PLD). The effects of substrate temperature on structural and optical properties of these nanostructures were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and spectroscopic ellipsometry. XRD showed that the ZnO nanostructures had c-axis oriented hexagonal wurtzite crystal structure. Crystallite sizes were found to increase as substrate temperature increases. An AFM measurement confirms the grain formation and increase in surface roughness at higher substrate temperature. Optical band gap of these ZnO nanostructures was calculated using transmittance spectra in UV–Vis region and found to decrease from 3.24 to 3.21 eV as substrate temperature is increased from 500 to 800 °C. PL spectra show that all the peaks in UV region around 389 nm; 3.18 eV. The decrease in band gap may be attributed to decrease in oxygen vacancies at higher substrate temperature and may be useful for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.K. Arya, S. Saha, J.E. Ramirez vick, V. Gupta, S. Bhansali, S.P. Singh, Anal. Chim. Acta, 737, 1 (2012)

    Article  Google Scholar 

  2. X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  Google Scholar 

  3. S.E. Volkan, P. Suat, S.K. Adan, A. Tuna, E. Saliha, O. Soner, E. Naci, M.B. Zafer, Appl. Surf. Sci. 318, 2 (2014)

    Article  Google Scholar 

  4. Y.Z. Dawood, S.Q. Hazaa, S.J. Hasan, N.A. Hasan, IOSR J. Appl. Phys. 7, 50 (2015)

    Google Scholar 

  5. J.F. Ghislain, F. Yamin, S. Moussa, H. Xintang, Mater. Sci. Semicond. Process. 16, 652 (2013)

    Article  Google Scholar 

  6. K.J. Raied, A.H. Mohammed, A.A. Kadhim, Mater. Lett. 132, 31 (2014)

    Article  Google Scholar 

  7. T.C. Zhang, Z.X. Mei, A.Y. Kuznetsov, X.L. Du, J. Cryst. Growth 325, 93–95 (2011)

  8. A. Ismail, M.J. Abdullah, J. King Saud Univ. Sci. 25, 209–215 (2013)

    Article  Google Scholar 

  9. A.J. Hashim, M.S. Jaafar, J.G. Alaa, N.M. Ahmed, Opt. Int. J. Light Electron. Opt. 124, 491 (2013)

    Article  Google Scholar 

  10. J.C. Hsiao, H.C. Chien, J.Y. Hung, L.W. Chien, M.F. Chia, F.H. Chien, C.L. Chao, Y. Peichen, C.H. Jenn, J. Taiwan Inst. Chem. Eng. 44, 758 (2013)

    Article  Google Scholar 

  11. A. Zaier, F. OumElaz, F. Lakfif, A. Kabir, S. Boudjadar ,M.S. Aida, Mater. Sci. Semicond. Process. 12(6), 207 (2009)

    Article  Google Scholar 

  12. K. Mahmood, S. Bashir, M.K.U. Rahman, N. Farid, M. Akram, A. Hayat, F.U. Haq, Surf. Rev. Lett. 20, 1350032 (2013)

    Article  Google Scholar 

  13. D. Zhang, Y. He, C.Z. Wang, Opt. Laser Technol. 42, 556 (2010)

    Article  Google Scholar 

  14. B.L. Zhu, X.H. Sun, X.Z. Zhao, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, J. Liu, Vacuum, 82, 495 (2008)

    Article  Google Scholar 

  15. S.J. Kang, Y.H. Joung, H.H. Shin, Y.S. Yoon, J. Mater. Sci 19, 1073 (2008)

    Google Scholar 

  16. M. Suchea, S. Christoulakis, M. Katharakis, G. Kiriakidis, N. Katsarakis, E. Koudoumas, Appl. Surf. Sci. 253, 8141 (2007)

    Article  Google Scholar 

  17. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Y.C. Kim, J. Cryst. Growth 277, 284 (2005)

    Article  Google Scholar 

  18. Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Appl. Surf. Sci. 241, 303 (2005)

    Article  Google Scholar 

  19. M. Maleki, S.M. Rozati, Acta Phys. Pol. A 128(3), 367 (2015)

    Article  Google Scholar 

  20. Y. Zhang, W. Fa, F. Yang, Z. Zheng, P. Zhang, Ionics 16, 815 (2010)

    Article  Google Scholar 

  21. T.P. Rao, M.C.S. Kumar, J. Cryst. Process Technol. 2, 72 (2012)

    Article  Google Scholar 

  22. K. Prabhakar, C. Kim, C. Lee, Cryst. Res. Technol. 40(12), 1150 (2005)

    Article  Google Scholar 

  23. S. Mandal, R.K. Singha, A. Dhar, S.K. Ray, Mater. Res. Bull. 43, 244 (2008)

    Article  Google Scholar 

  24. S.Y. Chu, W. Water, J.T. Liaw, J. Eur. Ceram. Soc. 23, 1593 (2003)

    Article  Google Scholar 

  25. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10(5), 40 (2007)

    Article  Google Scholar 

  26. H.A. Wahab, A.A. Salama, A.A. El-Saeid, O. Nur, M. Willander, I.K. Battisha, Results Phys. 3, 46 (2013)

    Article  Google Scholar 

  27. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  Google Scholar 

  28. V.R. Shinde, C.D. Lokhande, R.S. Mane, S.H. Han, Appl. Surf. Sci. 245, 407 (2010)

    Article  Google Scholar 

  29. S. Mandal, M.L.N. Goswami, K. Das, A. Dhar, S.K. Ray, Thin Solid Films 516, 8702 (2008)

    Article  Google Scholar 

  30. W.I. Park, Y.H. Jun, S.W. Jung, G.C. Yi, Appl. Phys. Lett. 82, 964 (2003)

    Article  Google Scholar 

  31. Y. Yang, B.K. Tay, X.W. Sun, Appl. Phys. Lett. 91, 071921 (2007)

    Article  Google Scholar 

  32. J. Lim, C. Lee, Thin Solid Films 515, 3335 (2007)

    Article  Google Scholar 

  33. Z. C. Feng, Handbook of zinc oxide and related material vol. 2, device and nano engineering, CRC press, Boca Raton, (2013)

    Google Scholar 

  34. Z.Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X.L. Yuan, T. Sekiguchi, J. Appl. Phys. 94, 4807 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge TEQIP-II and center for interdisciplinary research (CIR) lab MNNIT, Allahabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Kumar, N. Effect of substrate temperature on (00l) oriented growth of ZnO nanostructures on fused quartz substrate by PLD. J Mater Sci: Mater Electron 28, 9258–9264 (2017). https://doi.org/10.1007/s10854-017-6661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6661-8

Keywords

Navigation