Skip to main content
Log in

Reduced graphene oxide/Cu2O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An efficient photocathode consisting of reduced graphene oxide/Cu2O/Cu (rGO/Cu2O/Cu) has been successfully prepared in this work via a facile two step method, consisting of chemical oxidation of a copper foil in alkaline solution using (NH4)2S2O8 as the oxidizing agent, dipping the prepared samples in graphene oxide (GO) solution and calcination at vacuum to form a rGO layer onto Cu2O/Cu photocathode, which acts as a protective layer. The products were composed of a thin Cu2O layer topped with a thin rGO film as the protective coating. The chemical composition and rGO amount in the composite materials were easily controlled by changing the immersion time to enhance PEC performance. UV–Vis spectroscopy, Raman spectroscopy, XRD, SEM, TEM and FTIR spectroscopy were used in the optical and morphological characterization of the graphene oxide and prepared photocathodes. Distinct patches of GO film are formed on the Cu(OH)2 nanostructure surface, as shown by SEM results. Linear sweep voltammetry and chronoamperometry analysis have been applied in the photoelectrochemical characterizations in the dark and under illumination conditions. Photocurrent density provided by rGO/Cu2O/Cu photocathode − 2.54 mA cm− 2 is three times greater than that of bare Cu2O/Cu photocathode − 0.82 mA cm− 2 at 0 V vs. RHE under illumination. Low photostability of 42% is exhibited by bare Cu2O/Cu photocathode after 200 s irradiation whereas rGO/Cu2O/Cu photocathode shows approximately 98% of the initial photocurrent density. Therefore, a strategy has been developed in this work for the synthesis of this new photocathode using Cu2O/Cu as an effective photocathode for photoelectrochemical (PEC) water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Concina, A. Vomiero, Small. 11, 1744 (2015)

    Article  Google Scholar 

  2. L. Ding, E. Y, L. Fan, S. Yang, Chem. Commun 49, 6286 (2013)

    Article  Google Scholar 

  3. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano. 4, 380 (2009)

    Article  Google Scholar 

  4. A.E. Rakhshani, F.K. Barakat, Mater. Lett. 6, 37 (1987)

    Article  Google Scholar 

  5. T. Jingqi, L. Haiyan, X. Zhicai, W. Lei, L. Yonglan, Catal. Sci. Technol. 2, 2227 (2012)

    Article  Google Scholar 

  6. F. Shao, F.H. Ramirez, J.D. Prades, C. Fabrega, Appl. Surf. Sci. 311, 177 (2014)

    Article  Google Scholar 

  7. L. Hu, Y. Ju, M. Chen, A. Hosoi, S. Arai, Appl. Surf. Sci. 305, 710 (2014)

    Article  Google Scholar 

  8. H. Wu, S. Lee, W. Lu, K. Chang, Appl. Surf. Sci. 244, 236 (2015)

    Article  Google Scholar 

  9. L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, Y. Yu, J. Phys. Chem. C 112, 18916 (2008)

    Article  Google Scholar 

  10. A. Paracchino, J.C. Brauer, J.-E. Moser, E. Thimsen, M. Gr¨atzel, J. Phys. Chem. C 116, 7341 (2012)

    Article  Google Scholar 

  11. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 147, 486 (2000)

    Article  Google Scholar 

  12. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    Article  Google Scholar 

  13. J. Cui, U.J. Gibson, J. Phys. Chem. C 114, 6408 (2010)

    Article  Google Scholar 

  14. F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, Adv. Funct. Mater. 22, 3907 (2012)

    Article  Google Scholar 

  15. D. Snoke, Science 298, 1368 (2002)

    Article  Google Scholar 

  16. L. Xueqin, L. Zhen, Z. Wen, Z. Caixin, J. Mater. Chem. A 3, 19148 (2015)

    Article  Google Scholar 

  17. C. Yang, P.D. Tran, P.P. Boix, P.S. Bassi, N. Yantara, L.H. Wong, J. Barber, Nanoscale 6, 6506 (2014)

    Article  Google Scholar 

  18. S. Weina, Z. Xiaofan, L. Shaohui, Z. Bingyan, Appl. Surf. Sci. 358, 404 (2015)

    Article  Google Scholar 

  19. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, Energy Environ. Sci. 5, 8673 (2012)

    Article  Google Scholar 

  20. A.A. Dubale, W.N. Su, A.G. Tamirat, J. Mater. Chem. A 2, 18383 (2014)

    Article  Google Scholar 

  21. S. N. Baker, G. A. Baker, Angew. Chem. Int. Ed. 49, 6726 (2010)

    Article  Google Scholar 

  22. A.K. Geim, Science 324, 1530 (2009)

    Article  Google Scholar 

  23. Y. Ahn, Y. Jeong, Y. Lee, ACS Appl. Mater. Interfaces 4, 6410 (2012)

    Article  Google Scholar 

  24. R. Tenne, Nat. Nanotechnol. 1, 103 (2006)

    Article  Google Scholar 

  25. S.H. Cheng, T.M. Weng, M.L. Lu, W.C. Tan, Sci. Rep. 1, 1 (2013)

    Google Scholar 

  26. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Small 8, 1130 (2012)

    Article  Google Scholar 

  27. Y. Wang, H.J. Zhang, L. Lu, L.P. Stubbs, C.C. Wong, L. Jianyi, ACS Nano. 4, 4753 (2010)

    Article  Google Scholar 

  28. Z. Zhang, R. Dua, L. Zhang, H. Zhu, ACS Nano. 7, 1709 (2013)

    Article  Google Scholar 

  29. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, Solid State Commun. 146, 351 (2008)

    Article  Google Scholar 

  30. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)

    Article  Google Scholar 

  31. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  32. R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B 181, 362 (2016)

    Article  Google Scholar 

  33. S. Basumallick, Graphene 5, 95 (2016)

    Article  Google Scholar 

  34. W. Zou, L. Zhang, L. Liua, X. Wang, J. Sunb, S. Wu, Y. Deng, C. Tang, F. Gao, L. Donga, Appl. Catal. B 181, 503 (2016)

    Article  Google Scholar 

  35. W. Zhang, X. Li, Z. Yang, X. Tang, Y. Ma, M. Li, N. Hu, H. Wei, Y. Zhang, Nanotechnology 27, 265703 (2016)

    Article  Google Scholar 

  36. Y. Huang, C.F. Yan, C.Q. Guo, Z.X. Lu, Y. Shi, Z.D. Wang, Int. J. Hydrogen Energy DOI:10.1016/j.ijhydene.2016.10.157

  37. W.S. Hummers Jr., R.E. Offeman, Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  38. B. Li, T. Liu, L. Hu, Y. Wang, J. Phys. Chem. Solids 74, 635 (2013)

    Article  Google Scholar 

  39. C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, J.H. Lee, Carbon 49, 3502 (2011)

    Article  Google Scholar 

  40. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1130 (1970)

    Article  Google Scholar 

  41. S.E.J. Villar, L.G. Benning, H.G.M Edwards, Geochem. Trans. doi:10.1186/1467-4866-8-8 (2007)

    Google Scholar 

  42. C.Z. Zhu, S.J. Guo, Y.X. Fang, S.J. Dong, ACS Nano. 4, 2437 (2010)

    Google Scholar 

  43. C.F. Chen, T.T. Chen, H.L. Wang, G.B. Sun, X.J. Yang, Nanotechnology 22, 405602 (2011)

    Article  Google Scholar 

  44. M.M. Momeni, Z. Nazari, M. Hakimiyan, S.M. Mirhoseini, Surf. Eng. 30, 775 (2014)

    Article  Google Scholar 

  45. C. Hontoria-Lucas, A.J. López-Peinado, J.D. López-González, Carbon 33, 1585 (1995)

    Article  Google Scholar 

  46. S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158 (2012)

    Article  Google Scholar 

  47. G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Thin Solid Films 515, 2428 (2006)

    Article  Google Scholar 

  48. P. Su, H.L. Guo, L. Tian, S.K. Ning, Carbon 15, 5351 (2012)

    Article  Google Scholar 

  49. L. Rumin, D. Guojun, C. Guanmao, New J. Chem. 39, 6854 (2015)

    Article  Google Scholar 

  50. S. Yang, S. Du, S. Yiming, Z. Dongfeng, G. Lin, Chem. Eur. J. 18, 14261 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ghayeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayeb, Y., Momeni, M.M. & Menati, M. Reduced graphene oxide/Cu2O nanostructure composite films as an effective and stable hydrogen evolution photocathode for water splitting. J Mater Sci: Mater Electron 28, 7650–7659 (2017). https://doi.org/10.1007/s10854-017-6458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6458-9

Keywords

Navigation