Skip to main content
Log in

Structural and electrical properties of the Al/p-Cu2ZnSnS4 thin film schottky diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to calculate the Schottky barrier parameters and to explain the resulting effects, the conduction mechanisms in a Schottky barrier should be known. In the present study, we investigated the structural and electrical properties of Al/p-Cu2ZnSnS4 (CZTS)/Mo thin film Schottky junction. Structural characterization was carried out using X-Ray diffraction and Raman Scattering whereas electrical characterization was performed by using the current–voltage (I–V) characteristics and by recording the AC impedance spectroscopy over a wide range of temperature up to 558 K in the frequency range 5 Hz–13 MHz. The complex impedance plots display one semicircle with equivalent circuit functions as typical parallel RC connected to a serial resistance. The characteristic parameters such as barrier height, ideality factor and series resistance have been calculated from the I–V measurements. At room temperature, this heterostructure has shown non-ideal Schottky behavior with an ideality factor of 1.56 and 0.829 µA as a saturation current. By the impedance spectroscopy technique, we have found that all of the serial resistance Rs and the parallel resistance Rp decrease by increasing temperature whereas the capacitance C0 increased from 0.76 to 1.07 µF. From the Arrhenius diagram, we estimated activation energy at 0.289 eV which represents the energy difference between the trap level and the valence band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N.G. Dhere, Sol. Energy Mater Sol. Cells 91, 1376 (2007)

    Article  Google Scholar 

  2. N.G. Dhere, Sol. Energy Mater Sol. Cells 95, 277 (2011)

    Article  Google Scholar 

  3. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, K.M.A. Saron, M.A. Farrukh, N.K. Allam, J. Mater. Sci. 26, 222 (2015)

    Google Scholar 

  4. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog Photovolt 19, 894 (2011)

    Article  Google Scholar 

  5. A. Fairbrother, X. Fontané, V. Izquierdo- Roca, M. Espíndola-Rodríguez, S. López- Marino, M. Placidi, L. Calvo-Barrio, A. Pérez-Rodríguez, E. Saucedo, Sol. Energy Mater Sol. Cells 112, 97 (2013)

    Article  Google Scholar 

  6. A.U. Sheleg, V.G. Hurtavy, A.V. Mudryi, M. Ya. Valakh, V.O. Yukhymchuk, I.S. Babichuk, M. Leon, and R. Caballero, Semiconductors 48, 1296 (2014)

    Article  Google Scholar 

  7. M.A. Green, Prog. Photovol. 14, 383 (2006)

    Article  Google Scholar 

  8. B.A. Anderson, C. Azar, J. Holmberg, S. Karlsson, Energy 23, 407 (1998)

    Article  Google Scholar 

  9. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw and H. Deligianni, Adv. Energy Mater. 2(2), 253 (2012)

    Article  Google Scholar 

  10. A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A 29, 051203 (2011)

    Article  Google Scholar 

  11. H. Katagiri, Thin Solid Films 480–481, 426 (2005)

    Article  Google Scholar 

  12. P.S. Vasekar, T.P. Dhakal, in Solar Cells – Research And Application Perspectives, ed. by A.M. Acevedo (InTech, Rijeka, 2013), p. 145

    Google Scholar 

  13. A.R. Brown, C.P. Jarrett, D.M. de Leeuw, M. Matters, Synth. Met. 88, 37 (1997)

    Article  Google Scholar 

  14. E. Itoh, K. Miyairi, Thin Solid Films 499, 95 (2006)

    Article  Google Scholar 

  15. T.K. Lin, S.J. Chang, Y.Z. Chiou, C.K. Wang, S.P. Chang, K.T. Lam, Y.S. Sun, B.R. Huang, Solid-State Electron. 50, 750 (2006)

    Article  Google Scholar 

  16. W. Leroy, A Fundamental Study of Advanced Metal/Semiconductor Contacts (Ghent University, Ghent, 2006), pp. 1–169

    Google Scholar 

  17. A. Tombak, Y.S. Ocak, M.F. Genişel, T. Kilicoglu, Mater. Sci. Semicond. Process. 28, 98 (2014)

    Article  Google Scholar 

  18. E. Schlenker, V. Mertens, J. Parisi, R. Reineke-Koch, M. Köntges, Phys. Lett. A 362, 229 (2007)

    Article  Google Scholar 

  19. M. Igalson, H.W. Schock, J. Appl. Phys 80, 5765 (1996)

    Article  Google Scholar 

  20. A. Jasenek, U. Rau, V. Nadenau, H.W. Schock, J. Appl. Phys 87, 594 (2000)

    Article  Google Scholar 

  21. C. Deibel, V. Dyakonov, J. Parisi, Appl. Phys. Lett. 82, 3559 (2003)

    Article  Google Scholar 

  22. C.L. Chan, I. Shih, J. Appl. Phys 68, 156 (1990)

    Article  Google Scholar 

  23. P. A. Fernandes, P.M.P. Salomé, A.F. Sartori, J. Malaquias, A.F. da Cunha, B.A. Schubert, J.C. González, G.M. Ribeiro, Sol. Energy Mater Sol. Cells 115, 157 (2013)

    Article  Google Scholar 

  24. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodríguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  Google Scholar 

  25. B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, A.D. Li, AIP Adv. 4, 097115 (2014)

    Article  Google Scholar 

  26. C. Chan, H. Lam, C. Surya, Sol. Energy Mater Sol. Cells 94, 207 (2010)

    Article  Google Scholar 

  27. J.J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 10, 639 (2008)

    Article  Google Scholar 

  28. A. Shavel, D. Cadavid, M. Ibáñez, A. Carrete, A. Cabot, J. Am. Chem. Soc. 134, 1438 (2012)

    Article  Google Scholar 

  29. F. Jiang, H. Shen, W. Wang, J. Electron. Mater. 41(8), 2204 (2012)

    Article  Google Scholar 

  30. J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu, Appl. Surf. Sci. 264, 133 (2013)

    Article  Google Scholar 

  31. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Thin Solid Films 517, 2519 (2009)

    Article  Google Scholar 

  32. P.A. Fernandes, P.M.P. Salomé, J. Alloys Compd. 509, 7600 (2011)

    Article  Google Scholar 

  33. H. Neumann, Helv. Phys. Acta 58, 337 (1985)

    Google Scholar 

  34. M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid Films 519, 7403 (2011)

    Article  Google Scholar 

  35. M.Y. Valakh, O.F. Kolomys, S.S. Ponomaryov, V.O. Yukhymchuk, I.S. Babichuk, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J.R. Morante, S. Schorr, and I.V. Bodnar, Phys. Status Solidi RRL 7(4), 258 (2013)

    Article  Google Scholar 

  36. Z. Seboui, Y. Cuminal, N. Kamoun-Turki, J. Renewable Sustainable. Energy 5, 023113 (2013)

    Google Scholar 

  37. R. Caballero, E. Garcia-Llamas, J.M. Merino, M. León, I. Babichuk, V. Dzhagan, V. Strelchuk, M. Valakh, Acta Mater. 65, 412 (2014)

    Article  Google Scholar 

  38. L. Choubrac, A. Lafond, C. Guillot-Dendon, Y. Moelo, S. Jobic Inorg. Chem. 51, 3346 (2012)

    Article  Google Scholar 

  39. D. Huang, C. Persson, Thin Solid Films 535, 265 (2013)

    Article  Google Scholar 

  40. Y. Young-Moon, M.-H. Hyun, S. Nam, D Lee, O. Byungsung, K.-S. Lee, P.Y Yu, Y.D. Choi J. Appl. Phys 91(11), 9429 (2002)

    Article  Google Scholar 

  41. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor, Appl. Phys 6, 6 (2012)

    Google Scholar 

  42. A.A.M. Farag, I.S. Yahia, M. Fadel, Int. J. Hydrog. Energy 34, 4906 (2009)

    Article  Google Scholar 

  43. M. Shur, Physics of Semiconductor Devices. (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  44. A. Keffous, M. Siad, S. Mamma, Y. Belkacem, C. Lakhdar Chaouch, H. Menari, A. Dahmani, W. Chergui, Appl. Surf. Sci 218, 337 (2003)

    Article  Google Scholar 

  45. M.J. Turner, E.H. Rhoderick, Solid State Electron. 11, 291 (1968)

    Article  Google Scholar 

  46. S. M. Sze, Physics of Semiconductor Devices, 2nd Edn (John Wiley and Sons, New York, 1981), p. 1–138

    Google Scholar 

  47. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts, 2nd Edn (Clarendon Press, Oxford, 1988)

    Google Scholar 

  48. N. Tugluoglu, S. Karadeniz, M. Sahin, H. Safak, Semicond. Sci. Technol. 19, 1092 (2004)

    Article  Google Scholar 

  49. M.M. Patel, K.D. Patel, C.A. Patel, K.K. Patel, V.M. Pathak, R. Srivastava, ‘PRAJNA’ J. Pure Appl. Sci.,18,119 (2010)

    Google Scholar 

  50. A.E. Rakhshani, J. Alloys Compd. 675, 387–392 (2016)

    Article  Google Scholar 

  51. F. Jabli, H. Mosbahi, M. Gassoumi, C. Gaquiere, M.A. Zaidi, H. Maaref, J. Appl. Phys 6, 27 (2014)

    Google Scholar 

  52. S. Alialy, H. Tecimer, H. Uslu, Ş. Altındal, J Nanomed. Nanotechol. 4, 167 (2013)

    Article  Google Scholar 

  53. J.H. Werner, H.H. Guttler, J. Appl. Phys 69, 1522 (1991)

    Article  Google Scholar 

  54. V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy, Chel-Jong Choi, Open Appl. Phys. J. 5, 1 (2012)

    Article  Google Scholar 

  55. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett 49, 85 (1986)

    Article  Google Scholar 

  56. G. Güler, Ö. Güllü, Ş. Karataş, Ö.F Bakkaloğlu J. Phys. 153, 012054 (2009)

    Google Scholar 

  57. H. Bayhan, A.S. Kavasoglu, Turk. J. Phys 27, 529 (2003)

    Google Scholar 

  58. A.K. Jonscher, Dielectric Relaxation in Solids, (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  59. R.A. Kumar, M.S. Suresh, J. Nagaraju, Sol. Energy Mater. Sol. Cells 60, 155 (2000)

    Article  Google Scholar 

  60. M.S. Suresh, Sol. Energy Mater.Sol. Cells 43, 21 (1996)

    Article  Google Scholar 

  61. B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact. 70, 1 (2012)

    Article  Google Scholar 

  62. P.A. Fernandes, A.F. Sartori, P.M.P. Salomé, J. Malaquias, A.F. da Cunha, M.P.F. Graça, J.C. González, Appl. Phys. Lett. 100, 233504 (2012)

    Article  Google Scholar 

  63. C. Ostos, L. Mestres, M.L. Martinez-Sarrion, J.E. Garcia, A. Albareda, R. Perez, Solid State Sci. 11, 1016 (2009)

    Article  Google Scholar 

  64. S. Hamrouni, M.F. Boujmil, K. Ben Saad, Adv. Mater. Phys. Chem. 4, 224 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Touati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touati, R., Trabelsi, I., Rabeh, M.B. et al. Structural and electrical properties of the Al/p-Cu2ZnSnS4 thin film schottky diode. J Mater Sci: Mater Electron 28, 5315–5322 (2017). https://doi.org/10.1007/s10854-016-6189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6189-3

Keywords

Navigation