Skip to main content
Log in

Composition dependence of phase boundary and electrical properties in lead-free (K0.5Na0.5)(Nb0.96Sb0.04)O3–Bi0.5Na0.5ZrO3–Bi0.5Li0.5ZrO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, (K0.5Na0.5)(Nb0.96Sb0.04)O3–Bi0.5Na0.5ZrO3–Bi0.5Li0.5ZrO3 lead-free ceramics were fabricated by the conventional solid-state method, and effects of Bi0.5Li0.5ZrO3 on their phase structure and electrical properties were studied. Their piezoelectric properties are sensitive to the addition of Bi0.5Li0.5ZrO3 as well as its contents. The addition of Bi0.5Li0.5ZrO3 simultaneously increased their Curie temperature and decreased rhombohedral and tetragonal phase transition temperature. Their dielectric, ferroelectric, and piezoelectric properties were strongly dependent on Bi0.5Li0.5ZrO3 contents. With increasing Bi0.5Li0.5ZrO3 contents, their dielectric loss can be decreased, and their k p and P r values can be further optimized. However, their ε r and d 33 slightly decreased with the increase of Bi0.5Li0.5ZrO3 contents due to the deviation of rhombohedral and tetragonal phase boundary, and the ceramics with x ≤ 0.2 exhibited a high d 33 of >410 pC/N. As a result, this work could further understand the role of Bi0.5Li0.5ZrO3 in electrical properties of high-performance alkali niobate ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015)

    Article  Google Scholar 

  2. Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004)

    Article  Google Scholar 

  3. K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20(12), 1924 (2010)

    Article  Google Scholar 

  4. J.G. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1−x)NbO3–0.05LiSbO3 lead-free ceramics. J. Appl. Phys. 103, 024102 (2008)

    Article  Google Scholar 

  5. S.J. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100, 104108 (2006)

    Article  Google Scholar 

  6. Z. Shen, K. Wang, J. Li, Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics. Appl. Phys. A 97, 911 (2009)

    Article  Google Scholar 

  7. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87(18), 182905 (2005)

    Article  Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84 (2004)

    Article  Google Scholar 

  9. Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, X. Hao, Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 Ceramic. J. Am. Ceram. Soc. 94(9), 2968 (2011)

    Article  Google Scholar 

  10. R. Zuo, J. Fu, D. Lv, Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48−xLix)(Nb1−x−ySbyTax)O3 system. J. Am. Ceram. Soc. 92(1), 283 (2009)

    Article  Google Scholar 

  11. J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, L. Wu, Y.H. Jiang, Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96−xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett. 91(25), 252907 (2007)

    Article  Google Scholar 

  12. X. Li, J. Zhu, M. Wang, Y. Luo, W. Shi, L. Li, J. Zhu, D. Xiao, BiScO3-modified (K0.475Na0.475Li0.05)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. J. Alloys Compd. 499, L1 (2010)

    Article  Google Scholar 

  13. M. Jiang, M. Deng, H. Lu, S. Wang, X. Liu, Piezoelectric and dielectric properties of K0.5Na0.5NbO3–LiSbO3–BiScO3 lead-free piezoceramics. Mater. Sci. Eng. B 176, 167 (2011)

    Article  Google Scholar 

  14. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, Giant d 33 in (K, Na)(Nb, Sb)O3–(Bi, Na, K, Li) ZrO3 based lead-free piezoelectrics with high Tc. Appl. Phys. Lett. 103, 052906 (2013)

    Article  Google Scholar 

  15. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Lou, X. Wang, New potassium–sodium niobate material system: a giant-d 33 and high-T C lead-free piezoelectric. Dalton Trans. 43, 11759 (2014)

    Article  Google Scholar 

  16. D. Xiao, J. Wu, L. Wu, J. Zhu, P. Yu, D. Lin, Y. Liao, Y. Sun, Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. J. Mater. Sci. 44, 5408 (2009)

    Article  Google Scholar 

  17. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28(38), 8519 (2016)

    Article  Google Scholar 

  18. T. Zheng, J. Wu, Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics. ACS Appl. Mater. Interfaces 8(14), 9242 (2016)

    Article  Google Scholar 

  19. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, (K, Na) NbO3-Based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96(12), 3677 (2013)

    Article  Google Scholar 

  20. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905 (2014)

    Article  Google Scholar 

  21. Z.P. Yang, Y.F. Chang, L.L. Wei, Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett. 90(4), 042911 (2007)

    Article  Google Scholar 

  22. J.L. Zhang, X.J. Zong, L. Wu, Y. Gao, P. Zheng, S.F. Shao, Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Appl. Phys. Lett. 95, 022909 (2009)

    Article  Google Scholar 

  23. D. Lin, K.W. Kwok, H.L.W. Chan, Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1−xLix(Nb1−yTay)O3 lead-free piezoelectric ceramics. J. Appl. Phys. 102, 034102 (2007)

    Article  Google Scholar 

  24. R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic–rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3(5), 142 (2009)

    Article  Google Scholar 

  25. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33. ACS Appl. Mater. Interfaces 5(16), 7718 (2013)

    Article  Google Scholar 

  26. P. Zhao, B.P. Zhang, J.F. Li, High piezoelectric d 33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl. Phys. Lett. 90, 242909 (2007)

    Article  Google Scholar 

  27. Y. Chang, Z. Yang, L. Xiong, Z. Liu, Z. Wang, Phase structure, microstructure, and electrical properties of Sb-modified (K, Na, Li)(Nb, Ta)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 91(7), 2211 (2008)

    Article  Google Scholar 

  28. J. Hao, Z. Xu, R. Chu, Y. Zhang, Q. Chen, P. Fu, W. Li, G. Li, Q. Yin, Characterization of (K0.5Na0.5) NbO3 powders and ceramics prepared by a novel hybrid method of sol–gel and ultrasonic atomization. Mater. Design 31, 3146 (2010)

    Article  Google Scholar 

  29. T. Chen, H. Wang, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, Piezoelectric behavior of (1 − x)K0.50Na0.50NbO3xBa0.80Ca0.20ZrO3 lead-free ceramics. Ceram. Int. 39, 6619 (2013)

    Article  Google Scholar 

  30. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic Bismuth Ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the supports of the Chengdu Medical College and the Scientific Research Foundation of the Education Department of Sichuan Province, China (14Z057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, T., Chen, T., Liu, Y. et al. Composition dependence of phase boundary and electrical properties in lead-free (K0.5Na0.5)(Nb0.96Sb0.04)O3–Bi0.5Na0.5ZrO3–Bi0.5Li0.5ZrO3 ceramics. J Mater Sci: Mater Electron 28, 4879–4884 (2017). https://doi.org/10.1007/s10854-016-6135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6135-4

Keywords

Navigation