Skip to main content
Log in

Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hierarchically structured cathode material Li1.165Mn0.501Ni0.167Co0.167O2 (LMNCO) is successfully synthesized via a facile ultrasonic-assisted co-precipitation method with a two-step heat treatment by adopting graphene and carbon nanotubes (CNTs) as functional framework and modified material. The structure and electrochemical performance degeneration mechanism were systematically investigated in this work. The obtained LMNCO microspheres possess a hierarchical nano-micropore structure assembled with nanosized building blocks, which originates from the oxidative decomposition of the transition metal carbonate precursor and carbonaceous materials accompanied with the release of CO2 (but still remain carbon residue). What’s more, the positive electrode exhibits enhanced specific capacities (276.6 mAh g−1 at 0.1 C), superior initial coulombic efficiency (80.3 %), remarkable rate capability (60.5 mAh g−1 at 10 C) and high Li+ diffusion coefficient (~10−9 cm2 s−1). The excellent performances can be attributed to the pore structure, small particle sizes, large specific surface area and enhanced electrical conductivity. (1 C = 250 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Ou, L. Yang, X.H. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci.: Mater. Electron. 27, 9008–9014 (2016)

    Google Scholar 

  2. D.L. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L.Z. Wang, Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J. Mater. Chem. A 2, 18767–18774 (2014)

    Article  Google Scholar 

  3. W.L. Zhang, X.H. Hou, Z.R. Lin, L.M. Yao, X.Y. Wang, Y.M. Gao, S.J. Hu, Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries. J. Mater. Sci. Mater. Electron. 26, 9535–9545 (2015)

    Article  Google Scholar 

  4. X. Jiang, Z.H. Wang, D. Rooney, X.X. Zhang, J. Feng, J.S. Qiao, W. Sun, K.N. Sun, A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode. Electrochim. Acta 160, 131–138 (2015)

    Article  Google Scholar 

  5. X.W. Miao, Y. Yan, C.G. Wang, L.L. Cui, J.H. Fang, G. Yang, Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J. Power Sources 247, 219–227 (2014)

    Article  Google Scholar 

  6. K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)

    Article  Google Scholar 

  7. J.Y. Mun, J. Lee, T.J. Hwang, J.Y. Lee, H.N. Noh, W.C. Choi, Lithium difluoro(oxalate)borate for robust passivation of LiNi0.5Mn1.5O4 in lithium-ion batteries. J. Electroanal. Chem. 745, 8–13 (2015)

    Article  Google Scholar 

  8. S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J. Power Sources 221, 300–307 (2013)

    Article  Google Scholar 

  9. B. Ebin, G. Lindbergh, S. Gürmen, Preparation and electrochemical properties of nanocrystalline LiBxMn2-xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method. J. Alloys Compd. 620, 399–406 (2015)

    Article  Google Scholar 

  10. H.J. Yu, H.S. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for Lithium-Ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)

    Article  Google Scholar 

  11. M.H. Shao, In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J. Power Sources 270, 475–486 (2014)

    Article  Google Scholar 

  12. Q.G. Zhang, T.Y. Peng, D. Zhan, X.H. Hu, Synthesis and electrochemical property of xLi2MnO3·(1-x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3. J. Power Sources 250, 40–49 (2014)

    Article  Google Scholar 

  13. M. Gu, I. Belharouak, J.M. Zheng, H.M. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.G. Zhang, N.D. Browning, J. Liu, C.M. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013)

    Article  Google Scholar 

  14. J. Zhang, Q.W. Lu, J.H. Fang, J.L. Wang, J. Yang, Y.N. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 6, 17965–17973 (2014)

    Article  Google Scholar 

  15. X.K. Yang, X.Y. Wang, G.S. Zou, L. Hu, H.B. Shu, S.Y. Yang, L. Liu, H. Hu, H. Yuan, B.N. Hu, Q.L. Wei, L.H. Yi, Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. J. Power Sources 232, 338–347 (2013)

    Article  Google Scholar 

  16. J. Li, R. Klöpsch, M.C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J. Power Sources 196, 4821–4825 (2011)

    Article  Google Scholar 

  17. L. Li, L.C. Wang, X.X. Zhang, M. Xie, F. Wu, R.J. Chen, Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 21939–21947 (2015)

    Article  Google Scholar 

  18. J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2, 1249–1260 (2013)

    Article  Google Scholar 

  19. X.H. Zhang, D. Luo, G.S. Li, J. Zheng, C. Yu, X.F. Guan, C.C. Fu, X.D. Huang, L.P. Li, Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li0.14Mn0.47Ni0.25Co0.14]O2 for lithium-ion batteries. J. Mater. Chem. A 1, 9721–9729 (2013)

    Article  Google Scholar 

  20. J. Wang, B. Qiu, H.L. Cao, Y.G. Xia, Z.P. Liu, Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries. J. Power Sources 218, 128–133 (2012)

    Article  Google Scholar 

  21. Y.R. Liang, L.Y. Chen, L.F. Cai, H. Liu, R.W. Fu, M.Q. Zhang, D.C. Wu, Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chem. Commun. 52, 803–806 (2016)

    Article  Google Scholar 

  22. Y.T. Zhang, P.Y. Hou, E.L. Zhou, X.X. Shi, X.Q. Wang, D.W. Song, J. Guo, L.Q. Zhang, Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: a new procedure to improve tap density of high-performance cathode material Li1.167(Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries. J. Power Sources 292, 58–65 (2015)

    Article  Google Scholar 

  23. H. Liu, C.Y. Du, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2, 15640–15646 (2014)

    Article  Google Scholar 

  24. Q.R. Xue, J.L. Li, G.F. Xu, H.W. Zhou, X.D. Wang, F.Y. Kang, In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J. Mater. Chem. A 2, 18613–18623 (2014)

    Article  Google Scholar 

  25. J.H. Yan, X.B. Liu, B.Y. Li, Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 4, 63268–63284 (2014)

    Article  Google Scholar 

  26. S.M. Ma, X.H. Hou, Z.R. Lin, Y.L. Huang, Y.M. Gao, S.J. Hu, J.D. Shen, One-pot facile co-precipitation synthesis of the layered Li1+x(Mn0.6Ni0.2Co0.2)1−xO2 as cathode materials with outstanding performance for lithium-ion batteries. J. Solid State Electrochem. 20, 95–103 (2016)

    Article  Google Scholar 

  27. M. Gao, F. Lian, H.Q. Liu, C.J. Tian, L.L. Ma, W.Y. Yang, Synthesis and electrochemical performance of long lifespan Li-rich Li1+x(Ni0.37Mn0.63)1-xO2 cathode materials for lithium-ion batteries. Electrochim. Acta 95, 87–94 (2013)

    Article  Google Scholar 

  28. O. Toprakci, HAK. Toprakci, Y. Li, L.W. Ji, L.G. Xue, H. Lee, S. Zhang, X.W. Zhang, Synthesis and characterization of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources 241, 522–528 (2013)

    Article  Google Scholar 

  29. Z.Y. Wang, B. Li, J. Ma, D.G. Xia, Molten salt synthesis and high-performance of nanocrystalline Li-rich cathode materials. RSC Adv. 4, 15825–15829 (2014)

    Article  Google Scholar 

  30. T.L. Zhao, S. Chen, L. Li, X.F. Zhang, R.J. Chen, I. Belharouak, F. Wu, K. Amine, Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J. Power Sources 228, 206–213 (2013)

    Article  Google Scholar 

  31. J.Q. Zhao, S. Aziz, Y. Wang, Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J. Power Sources 247, 95–104 (2014)

    Article  Google Scholar 

  32. D. Luo, S.H. Fang, Q.H. Tian, L. Qu, S.M. Shen, L. Yang, S. Hdirano, Uniform LiMO2 assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries. J. Mater. Chem. A 3, 22026–22030 (2015)

    Article  Google Scholar 

  33. J. Meng, S.C. Zhang, X. Wei, P.H. Yang, S.B. Wang, J. Wang, H.L. Li, Y.L. Xing, G.R. Liu, Synthesis, structure and electrochemical properties of lithium-rich cathode material Li1.2Mn0.6Ni0.2O2 microspheres. RSC Adv 5, 81565–81572 (2015)

    Article  Google Scholar 

  34. J.G. Yang, F.Y. Cheng, X.L. Zhang, H.Y. Gao, Z.L. Tao, J. Chen, Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2, 1636–1640 (2014)

    Article  Google Scholar 

  35. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)

    Article  Google Scholar 

  36. J.W. Mao, X.H. Hou, X.Y. Wang, G.N. He, Z.P. Shao, S.J. Hu, Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv. 5, 31807–31814 (2015)

    Article  Google Scholar 

  37. J. Wang, G.X. Yuan, M.H. Zhang, B. Qiu, Y.G. Xia, Z.P. Liu, The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x ≤ 0.7) cathode materials. Electrochim. Acta 66, 61–66 (2012)

    Article  Google Scholar 

  38. G.B. Liu, H. Liu, Y.F. Shi, The synthesis and electrochemical properties of xLi2MnO3·(1-x)MO2 (M = Mn1/3Ni1/3Fe1/3) via co-precipitation method. Electrochim. Acta 88, 112–116 (2013)

    Article  Google Scholar 

  39. B.H. Song, M.O. Lai, Z.W. Liu, H.W. Liu, L. Lu, Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1, 9954–9965 (2013)

    Article  Google Scholar 

  40. B.H. Song, H.W. Liu, Z.W. Liu, P.F. Xiao, M.O. Lai, L. Lu, High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci. Rep. 3, 3094–3106 (2013)

    Google Scholar 

  41. B.G. Xu, Z. Wang, Electrochemical activity and mechanism of disengagement of lithium for Li2MnO3. Metal. Func. Mater. 19, 40–45 (2012)

    Google Scholar 

  42. Y.L. Huang, X.H. Hou, S.M. Ma, X.L. Zou, Y.P. Wu, S.J. Hu, Z.P. Shao, X. Liu, Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries. RSC Adv. 5, 25258–25265 (2015)

    Article  Google Scholar 

  43. W.C. Wen, S.H. Chen, Y.Q. Fu, X.Y. Wang, H.B. Shu, A core-shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J. Power Sources 274, 219–228 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific and Technological Plan of Guangdong Province (2016A050503040, 2016B010114002), the Scientific and Technological Plan of Guangzhou City (201607010322), the Hong Kong Polytechnic University (4-ZZDC) and Strategic Plan (1-ZVCG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhua Hou or Kwok-ho Lam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Hou, X., Li, Y. et al. Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries. J Mater Sci: Mater Electron 28, 2705–2715 (2017). https://doi.org/10.1007/s10854-016-5849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5849-7

Keywords

Navigation