Skip to main content
Log in

Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of annealing temperature on the dielectric and magnetic properties of (Co, Zn) co-doped SnO2 nanoparticles under air/oxygen (O2) and argon (Ar) atmospheres at 600 °C have been systematically investigated. A significant decrease is observed in dielectric constant and dielectric loss resulting from the incorporation of Co and Zn into the SnO2 lattice. Higher dielectric constant and loss was observed in the O2 annealed sample. Moreover, the electrical conductivity of the (Co, Zn) co-doped SnO2 samples increased in comparison with that of pure SnO2 sample due to the increase of available charge carriers after replacement of Sn ions with Co and Zn ions. Room-temperature ferromagnetism (RTFM) was observed for both the O2 and Ar annealed (Co, Zn) co-doped SnO2 samples. However, the remanent magnetization (Mr) varied drastically for different environmental annealing processes with Mr = 0.412 and 0.20 memu/g for the O2 and Ar-annealed samples, respectively. The results show that the enhanced dielectric and magnetic properties of (Co, Zn) co-doped SnO2 sample is strongly correlated with the increase in O2 vacancies. These findings not only demonstrate that (Co, Zn) co-doped SnO2 samples show tunable RTFM, but also suggests that RTFM can be influenced by introduction of O2 vacancies during O2 annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998)

    Article  Google Scholar 

  2. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  4. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and Applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  5. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363 (1996)

    Article  Google Scholar 

  6. P. Sharma, A. Gupta, R.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003)

    Article  Google Scholar 

  7. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2. Phys. Rev. Lett. 91, 77205 (2003)

    Article  Google Scholar 

  8. S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004)

    Article  Google Scholar 

  9. R. Janisch, P. Gopal, N.A. Spaldin, Transition metal-doped TiO2 and ZnO present status of the field. J. Phys. Condens. Matter 17, R657 (2005)

    Article  Google Scholar 

  10. D. Manikandan, R. Murugan, Room temperature dilute magnetism in nanoscale Co and Zn co-doped SnO2. Superlattices Microstruct. 89, 7–14 (2016)

    Article  Google Scholar 

  11. R. Khan, Zulfiqar, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 27, 4003–4010 (2016)

    Article  Google Scholar 

  12. R. Khan, Zulfiqar, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. 27, 5960–5966 (2016)

    Article  Google Scholar 

  13. P.D. Borges, L.M. Scolfaro, H.W. Alves, E.F. da Silva Jr., L.V. Assali, Study of the oxygen vacancy influence on magnetic properties of Fe- and Co-doped SnO2 diluted alloys. Nanoscale Res. Lett. 7, 540 (2012)

    Article  Google Scholar 

  14. S. Chen, X. Zhao, H.H. Xie, J. Liu, L. Duan, X. Ba, J. Zha, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255–3259 (2012)

    Article  Google Scholar 

  15. H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO2 thick film/Cu arrangement. Curr. Appl. Phys. 11, 1071–1076 (2011)

    Article  Google Scholar 

  16. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magneticproperties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4759-z

    Google Scholar 

  17. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  18. R. Khan, M.U. Zulfiqar, Z.U. Rahman, S.Fashu Rehman, Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5144-7

    Google Scholar 

  19. P.S. Szu, Y.C. Lin, AC impedance studies of copper doped silica glass. Phys. Chem. Mater. 82, 295–300 (2003)

    Article  Google Scholar 

  20. O. Pakma, N. Serinl, T. Serin, S. Altında, Influence of frequency and bias voltage on dielectric properties and electrical conductivityof Al/TiO2/p-Si/p? (MOS) structures. J. Phys. D Appl. Phys. 41, 215103 (2008)

    Article  Google Scholar 

  21. C.H. Ho, C.D. Liu, C.H. Hsieh, K.H. Hsieh, S.N. Lee, High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization. Synth. Met. 158, 630–637 (2008)

    Article  Google Scholar 

  22. S. Mehraj, M.S. Ansari, A.A. Al-Ghamdi, Alimuddin, Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior. Mater. Chem. Phys. 171, 109–118 (2016)

    Article  Google Scholar 

  23. H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl. Phys. Lett. 88, 242507 (2006)

    Article  Google Scholar 

  24. G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Oxygen vacancy induced ferromagnetism in un doped SnO2 films. Phys. Rev. B 85, 165319 (2012)

    Article  Google Scholar 

  25. J. Hays, A. Punnoose, A.M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Rajwali Khan and Zulfiqar would like thankful to the department of Physics, Material Science and Engineering Zhejiang University China, Abdul Wali Khan University Mardan Pakistan, and Harare Institute of Technology, Harare, Zimbabwe for providing experimental facilities. Finally, special thanks to the Chinese Government Scholarship for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Rahman, MU. et al. Effect of annealing temperature on the dielectric and magnetic response of (Co, Zn) co-doped SnO2 nanoparticles. J Mater Sci: Mater Electron 28, 2673–2679 (2017). https://doi.org/10.1007/s10854-016-5844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5844-z

Keywords

Navigation