Skip to main content
Log in

Improved fatigue property of hafnium substitute lead zirconate titanate deposited by pulse laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead hafnate titanate (PHT) thin film was deposited by pulse laser deposition, characterized for the usage as a ferroelectric capacitor in view of Ferroelectric Random Access Memory (FeRAM) devices, and compared with a lead zirconate titanate (PZT) reference, which was fabricated in the same conditions. Results indicate that the 126 nm-thickness PHT thin film with a low temperature self-buffer layer has a single (111)-orientation. The following electric measurements were performed to investigate the possibility of this thin film to use in the FeRAM applications by contrast to a PZT reference. This PHT sample demonstrates a good ferroelectric property with the remanent polarization of 51 μC/cm2. The remanent polarization with no obvious degradation has been observed after 2 × 109 fatigue reversals, which indicate that the PHT thin film a promising candidate in view of FeRAM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kohlstedt, Y. Mustafa, A. Gerber et al., Microelectron. Eng. 80, 296 (2005). doi:10.1016/j.mee.2005.04.084

    Article  Google Scholar 

  2. T. Morimoto, O. Hidaka, K. Yamakawa et al., Jpn. J. Appl. Phys. 39, 2110 (2000). doi:10.1143/jjap.39.2110

    Article  Google Scholar 

  3. S.R. Shannigrahi, H.M. Jang, Appl. Phys. Lett. 79, 1051 (2001). doi:10.1063/1.1392970

    Article  Google Scholar 

  4. Z.-K. Shen, Z.-H. Chen, Z.-J. Qiu et al., Microelectron. Eng. 87, 869 (2010). doi:10.1016/j.mee.2009.12.049

    Article  Google Scholar 

  5. N. Kotova, Y. Podgorny, D. Seregin, A. Sigov, A. Vishnevskiy, K. Vorotilov, Ferroelectrics 465, 54 (2014). doi:10.1080/00150193.2014.893806

    Article  Google Scholar 

  6. M. Dekkers, M.D. Nguyen, R. Steenwelle, P.M. te Riele, D.H.A. Blank, G. Rijnders, Appl. Phys. Lett. 95, 012902 (2009). doi:10.1063/1.3163057

    Article  Google Scholar 

  7. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999). doi:10.1038/44352

    Article  Google Scholar 

  8. F.Q. Zhang, Y.X. Li, J. Inorg. Mater. 29, 449 (2014). doi:10.3724/sp.j.1077.2014.13669

    Google Scholar 

  9. Y.-J. Seo, W.-S. Lee, Microelectron. Eng. 75, 149 (2004). doi:10.1016/j.mee.2004.03.086

    Article  Google Scholar 

  10. J. Lindner, M. Schumacher, M. Dauelsberg et al., Adv. Mater. Opt. Electron. 10, 163 (2000). doi:10.1002/1099-0712(200005/10)10:3/5<163:aid-amo405>3.0.co;2-a

    Article  Google Scholar 

  11. Y.-J. Seo, S.-W. Park, J. Korean Phys. Soc. 45, 3 (2004)

    Google Scholar 

  12. V.V. Sidsky, A.V. Semchenko, A.G. Rybakov et al., J. Rare Earths 32, 277 (2014). doi:10.1016/s1002-0721(14)60065-x

    Article  Google Scholar 

  13. P.J. Schorn, T. Schneller, U. Bottger, R. Waser, J. Am. Ceram. Soc. 88, 1312 (2005). doi:10.1111/j.1551-2916.2004.00177.x

    Article  Google Scholar 

  14. A.Q. Jiang, J.F. Scott, M. Dawber, C. Wang, J. Appl. Phys. 92, 6756 (2002). doi:10.1063/1.1516841

    Article  Google Scholar 

  15. M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000). doi:10.1063/1.125938

    Article  Google Scholar 

  16. G. Fantozzi, H. Idrissi, C. Favotto, M. Roubin, J. Eur. Ceram. Soc. 20, 1671 (2000). doi:10.1016/s0955-2219(00)00051-0

    Article  Google Scholar 

  17. R. Pan, Y. He, M. Li, P. Li, P. Liu, Z. Xia, Mater. Sci. Eng. B (2014). doi:10.1016/j.mseb.2014.06.012

    Google Scholar 

  18. C.G. Wu, Y.R. Li, J. Zhu, X.Z. Liu, W.L. Zhang, J. Appl. Phys. 105, 044107 (2009). doi:10.1063/1.3081971

    Article  Google Scholar 

  19. Y.L. Lin, J. Zhu, Z.P. Wu et al., J. Alloys Compd. 627, 182 (2015). doi:10.1016/j.jallcom.2014.12.122

    Article  Google Scholar 

  20. J. Frantti, Y. Fujioka, S. Eriksson, S. Hull, M. Kakihana, Inorg. Chem. 44, 9267 (2005). doi:10.1021/ic051169m

    Article  Google Scholar 

  21. J.P. Chang, Y.S. Lin, Appl. Phys. Lett. 79, 3666 (2001). doi:10.1063/1.1418265

    Article  Google Scholar 

  22. J. Müller, U. Schröder, T.S. Böscke et al., J. Appl. Phys. 110, 114113 (2011). doi:10.1063/1.3667205

    Article  Google Scholar 

  23. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, J. Appl. Phys. 90, 1387 (2001). doi:10.1063/1.1381542

    Article  Google Scholar 

  24. X.P. Wang, J. Zhu, W.B. Luo, Y. Zhang, Y.R. Li, J. Appl. Phys. 104, 074112 (2008). doi:10.1063/1.2996080

    Article  Google Scholar 

  25. W. Li, J. Gu, C. Song, D. Su, J. Zhu, J. Appl. Phys. 98, 114104 (2005). doi:10.1063/1.2134877

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Supporting Project from the Education Ministry of China (No. 625010112) and the National Natural Science Foundation of China (No. 51372030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhu, J. & Liu, X. Improved fatigue property of hafnium substitute lead zirconate titanate deposited by pulse laser deposition. J Mater Sci: Mater Electron 28, 1819–1823 (2017). https://doi.org/10.1007/s10854-016-5731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5731-7

Keywords

Navigation