Skip to main content
Log in

The influence of transition metal doping on the thermoelectric and magnetic properties of microwave synthesized SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dilute magnetic semiconductors at the nanoscale size are of great importance for different applications. However, their performance depends on several factors including the synthesis route and type of dopants. In this work tin dioxide (SnO2) nanoparticles (NPs) doped with different transition metals (TM) were synthesized by the microwave method and evaluated for their thermoelectric and magnetic properties. These TM include Fe, Cu, Cd, Ni and Zn. No significant changes are observed in the rutile tetragonal structure or morphology of SnO2 NPs by incorporating these dopants. Slight increase in value of the energy band gap of SnO2 NPs was observed in some of these samples. Oxygen defects were also noticed as revealed from the photoluminescence emission spectra. The valences states of the used TM were indentified using the XPS analysis. The resistivity of these NPs was decreased by incorporating these dopants meanly Ni and Zn ions. The magnetic measurement result showed that all the doped SnO2 NPs including the pure one have noticeable hysteresis loops, indicating that samples have room-temperature ferromagnetism. Strong magnetism with wider hysteresis loop was observed in the Fe doped SnO2 NPs. The induced magnetism could be attributed to the presence of defects at the grain boundaries, NPs interfacing sites, atom vacancies and existence of these dopants. The Fe doped SnO2 NPs might be a good DMS candidate for spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Pazhanivelu, A.P.B. Selvadurai, R. Murugaraj, J. Mater. Sci. Mater. Electron. 27, 2896 (2016)

    Article  Google Scholar 

  2. K. Sakthiraj, K. Balachandrakumar, J. Magn. Magn. Mater. 395, 205 (2015)

    Article  Google Scholar 

  3. V. Pazhanivelu, A.P.B. Selvadurai, R. Kannan, R. Murugaraj, J. Mater. Sci. Mater. Electron. 27, 5549 (2016)

    Article  Google Scholar 

  4. T. Li, W. Zeng, H. Long, Z. Wang, Sens. Actuators B Chem. 231, 120 (2016)

    Article  Google Scholar 

  5. S. Mehraj, M.S. Ansari, Alimuddin, Phys. E 65, 84 (2015)

    Article  Google Scholar 

  6. J.S. Lee, S.K. Sim, B. Min, K. Cho, S.W. Kim, S. Kim, J. Cryst. Growth 267, 145 (2004)

    Article  Google Scholar 

  7. G. Faglia, C. Baratto, G. Sberveglieri, M. Zha, A. Zappettini, Appl. Phys. Lett. 86, 011923 (2005)

    Article  Google Scholar 

  8. Y. Wang, J.Y. Lee, J. Phys. Chem. B 108, 17832 (2004)

    Article  Google Scholar 

  9. N.Q. Jia, Q. Zhou, L. Liu, M.M. Yan, Z.Y. Jiang, J. Electroanal. Chem. 580, 213 (2005)

    Article  Google Scholar 

  10. S. Mehraj, M.S. Ansari, Alimuddin, Thin Solid Films 589, 57 (2015)

    Article  Google Scholar 

  11. N. Salah, S. Habib, A. Azam, M.S. Ansari, W.M. AL-Shawafi, Nanotechnol. Nanomater. 6, 17 (2016)

    Article  Google Scholar 

  12. M. Parthibavarman, B. Renganathan, D. Sastikumar, Curr. Appl. Phys. 13, 1537 (2013)

    Article  Google Scholar 

  13. P. Rajeshwaran, A. Sivarajan, J. Mater. Sci. Mater. Electron. 26, 539 (2015)

    Article  Google Scholar 

  14. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, RSC Adv. 4, 6141 (2014)

    Article  Google Scholar 

  15. P. Mohanapriya, R. Pradeepkumar, N.V. Jaya, T.S. Natarajan, J. Appl. Phys. 105, 022406 (2014)

    Google Scholar 

  16. F.E. Ghodsi, J. Mazloom, Appl. Phys. A 108, 693 (2012)

    Article  Google Scholar 

  17. K. Gopinadhan, S.C. Kashyap, D.K. Pandya, S. Chaudhary, J. Appl. Phys. 102, 113513 (2007)

    Article  Google Scholar 

  18. G. Li, H. Wang, Q. Wang, Y. Zhao, Z. Wang, J. Du, Y. Ma, Nanoscale Res Lett. 10, 112 (2015)

    Article  Google Scholar 

  19. N. Rama, M.S.R. Rao, Solid State Commun. 150, 1041 (2010)

    Article  Google Scholar 

  20. V. Subramanian, W. Burke, H. Zhu, B.J. Wei, Phys. Chem. C 112, 4556 (2008)

    Article  Google Scholar 

  21. A. Srivastava, S.T. Lakshmikumar, A.K. Srivastava, K. Jain, Sens Actuators B Chem. 126, 587 (2007)

    Article  Google Scholar 

  22. Asdim, K. Manseki, T. Sugiura, T. Yoshida, New J Chem. 38, 598 (2014)

    Article  Google Scholar 

  23. S. Habibzadeh, Y. Mortazavi, A.A. Khodadadi, J. Nanosci. Nanotechnol. 10, 6003 (2010)

    Article  Google Scholar 

  24. N. Salah, W.M. AL-Shawafi, S.S. Habib, A. Azam, A.S. Alshahrie, Mater. Design 103, 339 (2016)

    Article  Google Scholar 

  25. S. Mehraj, M.S. Ansari, Alimuddin, Phys. B 430, 106 (2013)

    Article  Google Scholar 

  26. S.S. Lekshmya, V.S. Anithaa, K. Joy, MRS Proc. 1675, 113 (2014)

    Google Scholar 

  27. H. Zhu, D. Yang, G. Yu, H. Yao, K. Zhang, Nanotechnology 17, 2386 (2006)

    Article  Google Scholar 

  28. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, T. Paramasivam, RSC Adv. 4, 6141 (2014)

    Article  Google Scholar 

  29. K.V. Anand, R. Mohan, K.R. Mohan, M.K. Chinnu, R. Jayavel, J. Exp. Nanosci. 9, 261 (2014)

    Article  Google Scholar 

  30. N. Lavanya, S. Radhakrishnan, N. Sudhan, C. Sekar, S.G. Leonardi, C. Cannilla, G. Neri, Nanotechnology 25, 295501 (2014)

    Article  Google Scholar 

  31. H. Kim, L. Bi, D.H. Kim, D. Yang, Y.J. Choi, J.W. Lee, J.K. Kang, Y.C. park, G.F. Dionne, C.A. Ross, J. Mater. Chem. 21, 10364 (2011)

    Article  Google Scholar 

  32. Y. Yan, F. Du, X. Shen, Z. Ji, H. Zhou, G. Zhu, Dalton Trans. 43, 17544 (2014)

    Article  Google Scholar 

  33. C. Zhu, A. Oshero, M.J. Panzer, Electrochim. Acta 111, 771 (2013)

    Article  Google Scholar 

  34. X. Zhang, H. Yang, Sens. Actuators B Chem. 173, 127 (2012)

    Article  Google Scholar 

  35. G. Xiong, P. He, L. Liu, T. Chen, T.S. Fisher, Front. Energy Res. 3, 39 (2015)

    Google Scholar 

  36. A. Tripathi, S.K. Mishra, A. Pandey, R.K. Shukla, J. Mater. Sci.: Mater. Electron. 24, 4951 (2013)

    Google Scholar 

  37. A. Espinosa, N. Sánchez, J. Sánchez-Marcos, A. de Andrés, M.C. Muñoz, Phys. Chem. C 115, 24054 (2011)

    Article  Google Scholar 

  38. S.S. Farvid, M. Hegde, P.V. Radovanovic, Chem. Mater. 25, 233 (2013)

    Article  Google Scholar 

  39. T. Sabergharesou, T. Wang, L. Ju, P.V. Radovanovic, Appl. Phys. Lett. 103, 012401 (2013)

    Article  Google Scholar 

  40. M. Varadhaseshan, M. Sundara, C. Prema, Phys Procedia 54, 55 (2014)

    Article  Google Scholar 

  41. A. Sharma, S. Kumar, R. Kumar, M. Varshney, K.D. Verma, Optoelectron. adv. mater. 3, 1285 (2009)

    Google Scholar 

  42. J. Neamtu, M. Volmer, Sci. World J. 2014, 265969 (2014)

    Article  Google Scholar 

  43. P. Wu, B. Zhou, W. Zhou, Appl. Phys. Lett. 100, 182405 (2012)

    Article  Google Scholar 

  44. V. Agrahari, M.C. Mathpal, M. Kumar, A. Agarwal, J. Alloy Compd. 622, 48 (2015)

    Article  Google Scholar 

  45. N. Wang, W. Zhou, P. Wu, J. Mater. Sci. Mater. Electron. 26, 4132 (2015)

    Article  Google Scholar 

  46. N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 033205 (2008)

    Article  Google Scholar 

  47. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, App. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  48. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Ceram. Int. 38, 5563 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)—King Abdulaziz City for Science and Technology—the Kingdom of Saudi Arabia—award number (11-NAN2045-03). The authors also, acknowledge with thanks Science and Technology Unit, King Abdulaziz University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Numan Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, N., Habib, S. & Azam, A. The influence of transition metal doping on the thermoelectric and magnetic properties of microwave synthesized SnO2 nanoparticles. J Mater Sci: Mater Electron 28, 435–445 (2017). https://doi.org/10.1007/s10854-016-5540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5540-z

Keywords

Navigation