Skip to main content
Log in

Microwave absorption characteristics of Co2+ and W4+ substituted M-type Ba0.5Sr0.5CoxWxFe12−2xO19 hexagonal ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Co2+ and W4+ ions substituted M-type hexagonal ferrites, with chemical compositional formula Ba0.5Sr0.5CoxWxFe12−2xO19 (x = 0.0, 0.2, 0.8 and 1.0), were synthesized by a standard ceramic method. The phase evolution of the compositions was characterized by using an X-ray diffraction. The microwave absorption of compositions has been investigated as a function of frequency, substitution and thickness from 8.2 to 12.4 GHz by an absorber testing device method. The microwave absorption has been evaluated using the standard model of quarter wavelength mechanism and an impedance matching mechanism. The microwave absorption is enhanced in x = 0.0 and 0.2, with former owes 97.0 % absorbed power at 11.22 GHz and 2.4 mm respectively. Compositions x = 0.0, 0.2 and 0.8 exhibit −10 dB absorption bandwidth of 500 MHz while x = 1.0 owes 330 and 340 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Aphesteguy, A. Pamiani, D. Digiovanni, S.E. Jacobo, Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn and NiCuZn ferrites. Phys. B 404, 2713 (2009)

    Article  Google Scholar 

  2. X. Huang, J. Zhang, M. Lai, T. Sang, Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloys Compd. 627, 367 (2015)

    Article  Google Scholar 

  3. U.R. Lima, M.C. Nasar, M.C. Rezende, J.H. Araugo, Ni–Zn nanoferrite for radar-absorbing material. J. Magn. Magn. Mater. 320, 1666 (2008)

    Article  Google Scholar 

  4. P. Meng, K. Xiong, L. Wang, S. Li, Y. Cheng, G. Xu, Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1−xTiFe10O19. J. Alloys Compd. 628, 75 (2015)

    Article  Google Scholar 

  5. J. Liu, J. Zhang, P. Zhang, S. Wang, C. Lu, Y. Li, M. Zhang, Tunable microwave absorbing properties of barium hexa-ferrite nano powders by surface carbonized layers. Mater. Lett. 158(53), 53–57 (2015)

    Google Scholar 

  6. H. Wu, G. Wu, Q. Wu, L. Wang, Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere. Mater. Charact. 97, 18 (2014)

    Article  Google Scholar 

  7. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443 (2015)

    Article  Google Scholar 

  8. Y. Ren, L. Yang, L. Wang, T. Xu, G. Wu, H. Wu, Facile synthesis, photoluminescence properties and microwave absorption enhancement of porous and hollow ZnO. Powder Technol. 281, 20 (2015)

    Article  Google Scholar 

  9. H. Wu, Q. Wu, L. Wang, Design and wide range microwave absorption of porous Co–Co3O4 hybrid hollow sphere with magnetic multi-resonance mechanisms. Mater. Charact. 103, 1 (2015)

    Article  Google Scholar 

  10. W. Hu, L. Wang, Q. Wu, H. Wu, Facile synthesis, magnetic and optical properties of double-shelled Co3O4 hollow microspheres. Adv. Powder Technol. 25, 1780 (2014)

    Article  Google Scholar 

  11. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Lid, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677 (2015)

    Article  Google Scholar 

  12. H. Wu, L. Wang, Y. Wang, S. Guo, Z. Shen, Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J. Alloys Compd. 525, 82 (2012)

    Article  Google Scholar 

  13. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346 (2015)

    Article  Google Scholar 

  14. Q. Wu, G. Wu, L. Wang, W. Hu, H. Wu, Facile synthesis and optical properties of Prussian Blue microcubes and hollow Fe2O3 microboxes. Mater. Sci. Semicond. Process. 30, 476 (2015)

    Article  Google Scholar 

  15. H. Wu, L. Wang, H. Wu, Q. Lian, Synthesis and significantly enhanced microwave absorption properties of hematite dendrites/polyaniline nanocomposite. Appl. Phys. A 115, 1299 (2014)

    Article  Google Scholar 

  16. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157 (2015)

    Article  Google Scholar 

  17. K.-K. Ji, Y. Li, M.-S. Cao, Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption. J. Mater. Sci.: Mater. Electron. 27, 5128 (2016)

    Google Scholar 

  18. A. Baniasadi, A. Ghasemi, M.A. Ghadikolaei, A. Nemati, E. Paimozd, Microwave absorption properties of Ti–Zn substituted strontium hexaferrite. J. Mater. Sci.: Mater. Electron. 27, 1901 (2016)

    Google Scholar 

  19. Y. Cheng, X. Ren, Permeability and electromagnetic wave absorption properties of sintered barium hexaferrites with substitution of Co2+–Zr4+. J. Mater. Sci.: Mater. Electron. 27, 772 (2016)

    Google Scholar 

  20. S.S. Li, K. Xiong, P. Meng, X. Ren, G. Xu, Sol–gel synthesis of copper(II) and titanium(IV) ions co-doped barium ferrite submicrometer crystals and their microwave absorption performance. J. Mater. Sci.: Mater. Electron. 26, 5710 (2015)

    Google Scholar 

  21. Ali-Sharbati, J.-M.V. Khani, Influence of Ho substitution on structural, magnetic and microwave absorption properties of PbM-type hexaferrites nanoparticles. J. Mater. Sci.: Mater. Electron. 25, 244 (2014)

    Google Scholar 

  22. R.S. Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12−4xO19hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20 (2016)

    Article  Google Scholar 

  23. S.E. Jacobo, P.G. Bercoff, Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites range. Ceram. Int. 42, 7664 (2016)

    Article  Google Scholar 

  24. I. Sadiq, S. Naseem, M.N. Ashiq, M.A. Iqbal, I. Ali, M.A. Khan, S. Niaz, M.U. Rana, Spin canting effect and microwave absorption properties of Sm–Mn substituted nanosized material. J. Magn. Magn. Mater. 406, 184 (2016)

    Article  Google Scholar 

  25. P.T. Tho, C.T.A. Xuan, D.M. Quang, T.N. Bach, T.D. Thanh, N.T.H. Le, D.H. Manh, N.X. Phuc, D.N.H. Nam, Microwave absorption properties of dielectric La1.5Sr0.5NiO4 ultrafine particles. Mater. Sci. Eng. B186, 101 (2014)

    Article  Google Scholar 

  26. L. Wang, H. Yu, X. Ren, G. Xu, Magnetic and microwave absorption properties of BaMnxCo1−xTiFe10O19. J. Alloys Compd. 588, 212 (2014)

    Article  Google Scholar 

  27. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63, 1991 (2009)

    Google Scholar 

  28. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 2007 (2004)

    Article  Google Scholar 

  29. P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, T.C. Goel, Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. J. Appl. Phys. 87, 4362 (2000)

    Article  Google Scholar 

  30. E. Neckenburger, H. Severin, J.K. Vogel, G. Winkler, Ferrite hexagonaler Kristallstrustur mit hoher Grenzfrequenz. Z. Angew. Phys. 18, 65 (1964)

    Google Scholar 

  31. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57, 1191 (2012)

    Article  Google Scholar 

  32. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, F. Tabatabaei, Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. 43, 176 (2008)

    Article  Google Scholar 

  33. C.B. Carter, M.G. Norton, Ceramic materials: science and engineering (Springer, Berlin, 2013), p. 58

    Book  Google Scholar 

  34. B. Wang, J. Wei, Y. Yang, T. Wang, F. Li, Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 323, 1101 (2011)

    Article  Google Scholar 

  35. N.-N. Song, Y.J. Ke, H.-T. Yang, H. Zhang, X.-Q. Zhang, B.-G. Shen, Z.-H. Cheng, Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 2291, 1 (2013)

    Google Scholar 

  36. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  Google Scholar 

  37. T. Inui, K. Konishi, K. Oda, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Singh, C., Kaur, D. et al. Microwave absorption characteristics of Co2+ and W4+ substituted M-type Ba0.5Sr0.5CoxWxFe12−2xO19 hexagonal ferrites. J Mater Sci: Mater Electron 28, 228–235 (2017). https://doi.org/10.1007/s10854-016-5515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5515-0

Keywords

Navigation