Skip to main content
Log in

Metamorphosis of the ZnO buffer layer thicknesses on the performance of inverted organic solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the zinc oxide (ZnO) buffer layer thickness in the photovoltaic performance of inverted organic solar cells (OSCs) based on an active layer blend of poly(3-hexylthiophene), (P3HT) and [6, 6]-phenyl-C61 butyric acid methyl ester, (PCBM). The ZnO buffer layer acts as a protective layer to prevent the photoactive layer interface by UV light from oxidation. Besides, it reduces the energy barrier to easily transfer electrons between the collecting electrode and the organic acceptor lowest unoccupied molecular orbital level. The buffer layer block holes in P3HT from recombining with electrons in the collecting electrode. The X-ray diffraction analysis show that the constant orientation of the grains according to the c-axis perpendicular to the substrate surface. The optical measurements indicated that all samples have a transmission higher than 60 % in the visible range. A slight shift of the absorption edge toward the small wavelengths was observed as the thickness increased to over 250 nm. The electrical measurements depended on thickness. The resistivity decreased from 5.45 to 4.98 × 10−3 Ω.cm, and the mobility increased from 1.66 to 1.71 × 10−1 cm2/Vs when the thickness increased from 65.6 nm to 107.0 nm. This behavior was explained by the crystallinity pattern. The optimization of the ZnO buffer layer caused the short circuit current density to vary from 0.287 to 1.599 mA/cm2 and the fill factor to range between 19.08 and 24.55 %. This result increased the power conversion efficiency from 0.007 to 0.043 %. The photovoltaic performance of inverted structure OSCs is strongly dependent on the ZnO buffer layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Gholamkhass, N.M. Kiasari, P. Servati, An efficient inverted organic solar cell with improved ZnO and gold contact layers. Org. Electron. 13, 945–953 (2012)

    Article  Google Scholar 

  2. S. Schumann, R. Da Campo, B. Illy, A.C. Cruickshank, M.A. McLachlan, M.P. Ryan, D.J. Riley, D.W. McComb, T.S. Jones, Inverted organic photovoltaic devices with high efficiency and stability based on metal oxide charge extraction layers. J. Mater. Chem. 21, 2381–2386 (2011)

    Article  Google Scholar 

  3. J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, L. Schmidt-Mende, Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810–1828 (2011)

    Article  Google Scholar 

  4. N. Espinosa, H.F. Dam, D.M. Tanenbaum, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Roll-to-roll processing of inverted polymer solar cells using hydrated vanadium (V) oxide as a PEDOT:PSS replacement. Materials 4, 169–182 (2011)

    Article  Google Scholar 

  5. M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008)

    Article  Google Scholar 

  6. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Stability of polymer solar cells. Adv. Mater. 24, 580 (2012)

    Article  Google Scholar 

  7. T. Kuwabara, Y. Kawahara, T. Yamaguci, K. Takahaski, Characterization of inverted type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. Acs Appl. Mater. 1, 2107–2110 (2009)

    Article  Google Scholar 

  8. J.L. Delgado, P.A. Bouit, S. Filippone, M.A. Herranz, N. Martin, Organic photovoltaics: a chemical approach. Chem. Commun. 46, 4853–4865 (2010)

    Article  Google Scholar 

  9. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk- heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 1435171–1435173 (2006)

    Google Scholar 

  10. M.F. Malek, M.H. Mamat, M.Z. Sahdan, M.Z. Musa, Z. Khusaimi, M. Rusop, Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol-gel technique. Thin Solid Films 527, 102–109 (2013)

    Article  Google Scholar 

  11. M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Md Sin, M. Rusop, A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells. Appl. Surf. Sci. 275, 75–83 (2013)

    Article  Google Scholar 

  12. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107–221101–221107-221103 (2008)

    Article  Google Scholar 

  13. Y.-J. Noh, S.-I. Na, S.-S. Kim, Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray pyrolysis. Sol. Energy Mater. Sol. Cells 117, 139–144 (2013)

    Article  Google Scholar 

  14. R. Lampande, G.W. Kim, D.C. Choe, J.H. Kong, J.H. Kwon, Solution processed n-type mixed metal oxide layer for electron extraction in inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 125, 276–282 (2014)

    Article  Google Scholar 

  15. X. Yu, X. Yu, J. Zhang, G. Zhao, J. Ni, H. Cai, Y. Zhao, Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer. Sol. Energy Mater. Sol. Cells 128, 307–312 (2014)

    Article  Google Scholar 

  16. M. Thambidurai, J.Y. Kim, C.M. Kang, N. Muthukumarasamy, H.J. Song, J. Song, Y. Ko, D. Velauthapillai, C. Lee, Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew. Energy 66, 433–442 (2014)

    Article  Google Scholar 

  17. A. Baumann, T.J. Savenije, D.H.K. Murthy, M. Heeney, V. Dyakonov, C. Deibel, Influence of phase segregation on recombination dynamics in organic bulk heterojunction solar cells. Adv. Funct. Mater. 21, 1687–1692 (2011)

    Article  Google Scholar 

  18. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785–1799 (2011)

    Article  Google Scholar 

  19. M.Z. Sahdan, M.F. Malek, M.S. Alias, S.A. Kamaruddin, C.A. Norhidayah, N. Sarip, N. Nafarizal, M. Rusop, Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layer. Optik 126, 645–648 (2015)

    Article  Google Scholar 

  20. M.J. Alam, D.C. Cameron, Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J. Vac. Sci. Technol., A 19, 1642–1646 (2001)

    Article  Google Scholar 

  21. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  22. M.Z. Sahdan, M.H. Mamat, M. Salina, Z. Khusaimi, U.M. Noor, M. Rusop, Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures. Phys. Status Solidi C 7, 2286–2289 (2010)

    Article  Google Scholar 

  23. E.F. Keskenler, M. Tomakin, S. Doğan, G. Turgut, S. Aydın, S. Duman, B. Gürbulak, Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. J. Alloys Compd. 550, 129–132 (2013)

    Article  Google Scholar 

  24. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  25. T.P. Rao, M.C. Santhoshkumar, Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 255, 4579–4584 (2009)

    Article  Google Scholar 

  26. O. Lupan, T. Pauporte´, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B. Roldan Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    Article  Google Scholar 

  27. Selected Powder Diffraction Data for Metals and Alloys, vol.1 (JCPDS, USA, 1978), p. 108

  28. R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)

    Article  Google Scholar 

  29. V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063–1073 (1996)

    Article  Google Scholar 

  30. X.J. Ping, S.S. Bo, L. Lan, Z.X. Song, W.Y. Xin, C.X. Ming, Effects of annealing temperature on structural and optical properties of ZnO thin films. Chin. Phys. Lett. 27, 047803 (2010)

    Article  Google Scholar 

  31. Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, K.Y. Tse, H.H. Hng, Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. J. Appl. Phys. 94, 1597–1604 (2003)

    Article  Google Scholar 

  32. M.F. Malek, M.H. Mamat, M.Z. Musa, Z. Khusaimi, M.Z. Sahdan, A.B. Suriani, A. Ishak, I. Saurdi, S.A. Rahman, M. Rusop, Thermal annealing-induced formation of ZnO nanoparticles: minimum strain and stress ameliorate preferred c-axis orientation and crystal-growth properties. J. Alloys Compd. 610, 575–588 (2014)

    Article  Google Scholar 

  33. J. Rodríguez-Báez, A. Maldonado, G. Torres-Delgado, R. Castanedo-Pérez, M. de la, L. Olvera, Influence of the molar concentration and substrate temperature on fluorine-doped zinc oxide thin films chemically sprayed. Mater. Lett. 60, 1594–1598 (2006)

    Article  Google Scholar 

  34. M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol-gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (0 0 2) orientation enhances the final properties. J. Alloys Compd. 582, 12–21 (2014)

    Article  Google Scholar 

  35. H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004)

    Article  Google Scholar 

  36. J. Rostalski, D. Meissner, Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Sol. Energy Mater. Sol. Cells 63, 37–47 (2000)

    Article  Google Scholar 

  37. H.P. Kim, A.R.M. Yusoff, H.M. Kim, H.J. Lee, G.J. Seo, J. Jang, Inverted organic photovoltaic device with a new electron transport layer. Nanoscale Res. Lett. 9, 150–150 (2014)

    Article  Google Scholar 

  38. T.-H. Lai, S.-W. Tsang, J.R. Manders, S. Chen, F. So, Properties of interlayer for organic photovoltaics. Mater. Today 16, 424–432 (2013)

    Article  Google Scholar 

  39. H. Kim, K. Lee, Role of interpenetrating networks in the device performance of polymer-fullerene photovoltaic cells. J. Korean Phys. Soc. 42, 183–186 (2003)

    Google Scholar 

  40. H. Sun, J. Weickert, H.C. Hesse, L. Schmidt-Mende, UV light protection through TiO2 blocking layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3450–3454 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Education Malaysia for the financial support through FRGS grant Vote No. 1093 and the Program Ahli Sains dan Penyelidik Muda (PSPM) scholarship under the Universiti Teknologi MARA (UiTM) and the Ministry of Higher Education (MOHE) Malaysia. We also acknowledge Universiti Tun Hussein Onn Malaysia (UTHM) for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Malek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahdan, M.Z., Malek, M.F., Alias, M.S. et al. Metamorphosis of the ZnO buffer layer thicknesses on the performance of inverted organic solar cells. J Mater Sci: Mater Electron 27, 12891–12902 (2016). https://doi.org/10.1007/s10854-016-5425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5425-1

Keywords

Navigation