Skip to main content
Log in

Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

An Erratum to this article was published on 26 July 2017

This article has been updated

Abstract

Optical bandgap narrowing is observed in Sn0.94 Zn0.05Co0.01O2, Sn0.92 Zn0.05Co0.03O2 and Sn0.90 Zn0.05Co0.05O2 nanoparticles synthesized by the chemical co- precipitation method. The estimated particle size and optical band gap of Sn0.94 Zn0.05Co0.01O2, Sn0.92 Zn0.05Co0.03O2 and Sn0.90 Zn0.05Co0.05O2 nanoparticles are 16.51, 11.75 and 6.6 nm and 1.45, 1.36 and 0.93 eV, respectively. A red shift is noticed for all samples as compared to band gap value (3.6 eV) for bulk SnO2. Increasing Co content results in decreased particle size, narrowed band gap and enhanced emission intensities in visible range of light. Small sized nano particles have larger surface areas and these large surface areas lead to more defects (oxygen vacancies, tin interstitials). The increasing defects concentration (especially oxygen vacancies, tin interstitials) results to narrow the band gap. With increasing Co content, the particles are in oxygen-poor state indicating the presence of many O vacancies and Sn interstitials. The oxygen content decreases steadily with increasing Co content, with the Sn:O atomic ratio increases suggesting the high density of defects. Large number of defects (oxygen vacancies) creates several donor levels within the forbidden energy gap to narrow the band gap and these defects in the band gap act as luminescent centers to enhance the emission intensities in visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 26 July 2017

    An erratum to this article has been published.

References

  1. A.K. Sinha, P.K. Manna, M. Pradhan, C. Mondal, S.M. Yusuf, T. Pal, Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv. 4, 208–211 (2014)

    Article  Google Scholar 

  2. V.B. Kamble, A.M. Umarji, Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 3, 082120–082125 (2013)

    Article  Google Scholar 

  3. D.S. Ginley, C. Bright, Transparent conducting oxides. MRS Bull. 25, 15–18 (2000)

    Article  Google Scholar 

  4. T. Minami, New n-type transparent conducting Oxides. MRS Bull. 25, 38–44 (2000)

    Article  Google Scholar 

  5. D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2(110)-1 × 1 surface. Phys. Rev. B: Condens. Matter 38, 2072–2085 (1988)

    Article  Google Scholar 

  6. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photo-catalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  Google Scholar 

  7. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photo-electrochemical and photocatalytic studies. Mater. Chem. A 2, 637–644 (2014)

    Article  Google Scholar 

  8. H. Rinnert, P. Miska, M. Vergnat, G. Schmerber, S. Colis, A. Dinia, D. Muller, G. Ferblantier, A. Slaoui, Photoluminescence of Nd-doped SnO2 thin films. Appl. Phys. Lett. 100, 101908 (2012). doi:10.1063/1.3692747

    Article  Google Scholar 

  9. Z.M. Tian, S.L. Yuan, J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method. J. Alloys Compd. 466, 26–30 (2008)

    Article  Google Scholar 

  10. Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, 1–6 (2012)

    Article  Google Scholar 

  11. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photo-electrochemical and photocatalytic studies. Mater. Chem. A 2, 637–644 (2014)

    Article  Google Scholar 

  12. R. Long, N.J. English, Synergistic effects on band gap-narrowing in Titania by co-doping from first-principles calculations. Chem. Mater. 22, 1616–1623 (2010)

    Article  Google Scholar 

  13. J.G. Lu, Z.Z. Ye, Y.Z. Zhang, Q.L. Liang, S. Fujita, Z.L. Wang, Self-assembled ZnO quantum dots with tunable optical properties. Appl. Phys. Lett. 89, 023122 (2006)

    Article  Google Scholar 

  14. J.G. Lu, Z.Z. Ye, J.Y. Huang, L.P. Zhu, B.H. Zhao, Z.L. Wang, S. Fujita, ZnO quantum dots synthesized by a vapor phase transport process. Appl. Phys. Lett. 88, 063110 (2006)

    Article  Google Scholar 

  15. Zulfiqar, Y. Yuan, Q. Jiang, J. Yang, L. Feng, W. Wang, Z. Ye, J. Lu, Variation in luminescence and bandgap of Zn-doped SnO2 nanoparticles with thermal decomposition. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-5006-3

    Google Scholar 

  16. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4759-z

    Google Scholar 

  17. R. Khan, Zulfiqar, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 4003–4010 (2016)

    Google Scholar 

  18. R. Khan, Zulfiqar, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 5960–5966 (2016)

    Google Scholar 

  19. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4759-z

    Google Scholar 

  20. P. Mohanapriya, R. Pradeepkumar, N. Jaya, T. Natarajan, Magnetic and optical properties of electro-spun hollow nano-fibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)

    Article  Google Scholar 

  21. A. Punnoose, J. Hays, V. Gopal, V. Shutthanandan, Room-temperature ferromagnetism in chemically synthesized Sn1−x Co x O2 powders. Appl. Phys. Lett. 85, 1559–1561 (2004)

    Article  Google Scholar 

  22. D.R. Leite, W.C. Las, G. Brankovic, M.A. Zaghete, M. Cilence, J.A. Varela, Use of impedance spectroscopy in the study of the effect of Cr concentration on the electrical properties of SnO2 based ceramics. Mater. Sci. Forum 498–499, 337–341 (2005)

    Article  Google Scholar 

  23. J.A. Cerri, E.R. Leite, D. Gouvêa, E. Longo, Effect of cobalt(II) and manganese(IV) on sintering of tin(IV) oxide. J. Am. Ceram. Soc. 79, 799–804 (1996)

    Article  Google Scholar 

  24. I.H. Gul, F. Amin, A.Z. Abbasi, M. Anis-ur-Rehman, A. Maqsood, Structural, dielectric, and magnetic characterization of nanocrystalline Ni–Co ferrites. Scr. Mater. 56, 497 (2007)

    Article  Google Scholar 

  25. F. Gervais, W. Kress, Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions of NbO2 and VO2. Phys. Rev. B 31, 4809–4814 (1985)

    Article  Google Scholar 

  26. C.M. Liu, X.T. Zu, Q.M. Wei, L.M. Wang, Fabrication and characterization of wire-like SnO2. J. Phys. D Appl. Phys. 39, 2494–2497 (2006)

    Article  Google Scholar 

  27. P. Wu, Q. Li, X. Zou, W. Cheng, D. Zhang, C. Zhao, L. Chi, T. Xiao, Correlation between photoluminescence and oxygen vacancies in In2O3, SnO2 and ZnO metal oxide nanostructures. Phys. Conf. Ser. 188, 012054–012058 (2009)

    Article  Google Scholar 

  28. B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self-assembly of mesoporous SnO2 nano-spheres and their applications in water purification. RSC Adv. 3, 12140–12148 (2013)

    Article  Google Scholar 

  29. C. Cheng, G. Xu, H. Zhang, Y. Li, Y. Luo, P. Zhang, A simple route to synthesize multiform structures of tin oxide nano-belts and optical properties investigation. Mater. Sci. Eng. B 147, 79–83 (2008)

    Article  Google Scholar 

  30. F. Gu, S. Wang, M. Lu, G. Zhou, D. Xu, D. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  31. J. Yang, J. Appl. Phys. 108, 1 (2010)

    Google Scholar 

  32. J. SuhuaLuo, W. Fan, M. Liu, Z. Zhang, C. Song, X. Lin, P. Wu, K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts. Nanotechnology 17, 1695–1699 (2006)

    Article  Google Scholar 

  33. P. Wu, Q. Li, X. Zou, W. Cheng, D. Zhang, C. Zhao, L. Chi, T. Xiao, Correlation between photoluminescence and oxygen vacancies in In2O3, SnO2 and ZnO metal oxide nanostructures. J. Phys: Conf. Ser. 188, 012054–012058 (2009)

    Google Scholar 

  34. B. Dole, V. Mote, V. Huse, Y. Purushotham, M. Lande, K. Jadhav, S. Shah, Structural studies of Mn doped ZnO nanoparticles. J. Curr. Appl. Phys. 11, 762–766 (2011)

    Article  Google Scholar 

  35. C.M. Fan, Y. Peng, Q. Zhu, L. Lin, R.X. Wang, A.W. Xu, Synproportionation reaction for the fabrication of Sn2+ self-doped SnO2−x nanocrystals with tunable band structure and highly efficient visible light photocatalytic activity. Phys. Chem. C 117, 24157–24166 (2013)

    Article  Google Scholar 

  36. S. Kalathil, M.M. Khan, A.A. Sajid, M.H. Cho, J. Lee, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilm and their visible light activity. Nanoscale 5, 6323–6326 (2013)

    Article  Google Scholar 

  37. S. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006)

    Article  Google Scholar 

  38. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  Google Scholar 

  39. N. Li, K. Du, G. Liu, Y.P. Xie, G.M. Zhou, J. Zhu, F. Li, H.M. Cheng, Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 1, 1536–1539 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant No. 51372002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Lu.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10854-017-7545-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, Yuan, Y., Yang, J. et al. Structural and optical properties of (Zn, Co) co-doped SnO2 nano particles. J Mater Sci: Mater Electron 27, 12119–12127 (2016). https://doi.org/10.1007/s10854-016-5364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5364-x

Keywords

Navigation