Skip to main content
Log in

Improved performance of perovskite solar cell by controlling CH3NH3PbI3−xClx film morphology with CH3NH3Cl-assisted method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sequential deposition solution-based method has been widely used for the fabrication of perovskite solar cells (PSCs). However, there is still a challenge to achieve homogeneous and consecutive surface of the perovskite layers. In this work, CH3NH3PbI3−xClx layers were prepared by a modified two-step solution method. Specifically, the optimum amount of CH3NH3Cl pre-added into PbI2 precursor solution, the appropriate size of pinholes and voids appear in PbI2 films and leave room for the growth of CH3NH3PbI3−xClx crystal. Under this condition, the crystal grains size is diminished and the surface coverage ratio of CH3NH3PbI3−xClx film is enhanced, which prevent the combination of electron-hole pairs on the interface between perovskite layer and TiO2 substrate. By varying the CH3NH3Cl amounts, the PSC devices displayed the highest power conversion efficiency of 13 %, which was obviously higher than that of the one prepared via transitional routes (10.32 %). As a result, we developed a simple and repeatable route for controllable synthesis of perovskite absorption layers, which is demonstrated to be effective to improve the performance of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  3. K. Sun, S.P. Zhang, P.C. Li, Y.J. Xia, X. Zhang, D.H. Du, F.H. Isikgor, J.Y. Ouyang, Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci.: Mater. Electron. 7, 4438–4462 (2015)

    Google Scholar 

  4. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014)

    Article  Google Scholar 

  5. Q. Wang, H.J. Chen, G. Liu, L.Z. Wang, Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Sci. Bull. 4, 405–418 (2015)

    Article  Google Scholar 

  6. L. Zhu, Y.H. Qiang, Y.L. Zhao, X.Q. Gu, Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl. Surf. Sci. 292, 55–62 (2014)

    Article  Google Scholar 

  7. X.P. Lin, D.M. Song, X.Q. Gu, Y.L. Zhao, Y.H. Qiang, Synthesis of hollow spherical TiO2 for dye-sensitized solar cells with enhanced performance. Appl. Surf. Sci. 263, 816–820 (2012)

    Article  Google Scholar 

  8. Y.L. Zhao, D.M. Song, Y.H. Qiang, X.Q. Gu, L. Zhu, C.B. Song, Dye-sensitized solar cells based on TiO2 hollow spheres/TiO2 nanotube array composite films. Appl. Surf. Sci. 309, 85–89 (2014)

    Article  Google Scholar 

  9. X. Dong, X. Fang, M.H. Lv, B.C. Lin, S. Zhang, Y. Wang, N.Y. Yuan, J.N. Ding, Method for improving illumination instability of organic–inorganic halide perovskite solar cells. Sci. Bull. 3, 236–244 (2016)

    Article  Google Scholar 

  10. Y. Zhao, K. Zhu, Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO solar cells. J. Phys. Chem. Lett. 4, 2880–2884 (2013)

    Article  Google Scholar 

  11. J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H.J. Snaith, R.J. Nicolas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2014)

    Article  Google Scholar 

  12. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  13. Y. Zhao, J. Liu, X.R. Lu, Y.D. Gao, X.Z. You, X.X. Xu, Improving the efficiency of perovskite solar cells through optimization of the CH3NH3PbI3 film growth in solution process method. Appl. Surf. Sci. 359, 560–566 (2015)

    Article  Google Scholar 

  14. P. Docampo, F.C. Hanusch, S.D. Stranks, M. Doblinger, J.M. Feckl, M. Ehrensperger, N.K. Minar, M.B. Johnston, H.J. Snaith, T. Bein, Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4, 1400355 (2014)

    Article  Google Scholar 

  15. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  16. A. Yella, L.P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7 % efficiency. Nano Lett. 14, 2591–2596 (2014)

    Article  Google Scholar 

  17. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133–138 (2014)

    Article  Google Scholar 

  18. P. Fan, D. Gu, G.X. Liang, J.L. Chen, J.T. Luo, Y.Z. Xie, Z.H. Zheng, D.P. Zhang, Growth of high quality CH3NH3PbI3 thin films prepared by modified dual-source vapor evaporation. J. Mater. Sci.: Mater. Electron. 3, 2321–2327 (2015)

    Google Scholar 

  19. M.Z. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  20. Y.Z. Wu, A. Islam, X.D. Yang, C.J. Qin, J. Liu, K. Zhang, W.Q. Peng, L.Y. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)

    Article  Google Scholar 

  21. P.W. Liang, C.Y. Liao, C.C. Chueh, F. Zuo, S.T. Williams, X.K. Xin, J.J. Lin, A.K.Y. Jen, Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)

    Article  Google Scholar 

  22. A.Y. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)

    Article  Google Scholar 

  23. X. Li, M.I. Dar, C.Y. Yi, J.S. Lou, M. Tschumi, S.M. Zakeeruddi, M.K. Nazeeruddin, H.W. Han, M. Gratze, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703–711 (2015)

    Article  Google Scholar 

  24. Y. Zhao, K. Zhu, CH3NH3Cl-assisted one-step solution growth of CH(3)NH(3)Pbl(3): structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)

    Article  Google Scholar 

  25. G.C. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKZD01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhu or Y. H. Qiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B.G., Zhu, L., Zhao, Y.L. et al. Improved performance of perovskite solar cell by controlling CH3NH3PbI3−xClx film morphology with CH3NH3Cl-assisted method. J Mater Sci: Mater Electron 27, 10869–10876 (2016). https://doi.org/10.1007/s10854-016-5196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5196-8

Keywords

Navigation