Skip to main content
Log in

Photoelectrochemical investigation of bare transparent conducting oxides for water oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bare tin-doped indium oxide (ITO) and fluorine-doped tin oxide (FTO), which are widely used transparent conducting metal oxide as anode materials for various electrochemical applications, are not used as anode materials for photoelectrochemical (PEC) oxidation of water as those required high potential to obtain efficient oxidation of water. To reduce the oxidation potential, tedious modification with photoelectrocatalyst is required. A straightforward alternative of using the modified electrode would be established if any bare metal oxide could be used as an efficient electrode material for water oxidation. Here, we report for the first time that commercially available bare gallium doped zinc oxide (GZO) has great potential to be utilized as an anode material for efficient PEC water oxidation at low potential under UV–Vis light. The higher performance of GZO was revealed by comparing the PEC behavior of other commercially available and frequently employed transparent conductive metal oxide electrodes, namely, ITO, FTO, and aluminum-doped zinc oxide. The GZO and AZO show the highest and second highest water oxidation signal, respectively, among the tested electrodes. Moreover, the GZO shows higher stability as compared to AZO under applied experimental conditions. ITO electrode also exhibited a good stability but its efficacy towards water oxidation was the lowest. The efficiency of the GZO toward PEC water oxidation at 0.6 V is ca. 36.5 times higher than that obtained at ITO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Nanoscale Res. Lett. 10, 1–6 (2015). doi:10.1186/s11671-015-0745-2

    Article  Google Scholar 

  2. D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 42, 1890–1898 (2009)

    Article  Google Scholar 

  3. X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Nano-Micro Lett. (2015). doi:10.1007/s40820-015-0063-3

    Google Scholar 

  4. Z. Chen, A.R. Rathmell, S. Ye, A.R. Wilson, B.J. Wiley, Angew. Chem. Int. Ed. 52, 13708–13711 (2013). (and references therein)

    Article  Google Scholar 

  5. P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochem. Solid-State Lett. 11, H160–H163 (2008)

    Article  Google Scholar 

  6. C. Cheng, H. Zhang, W. Ren, W. Dong, Y. Sun, Nano Energy 2, 779–786 (2013)

    Article  Google Scholar 

  7. F. Zhou, C. McDonnell-Worth, H. Li, J. Li, L. Spiccia, D.R. Macfarlane, J. Mater. Chem. A 3, 16642–16652 (2015)

    Article  Google Scholar 

  8. M. Fekete, W. Ludwig, S. Gledhill, J. Chen, A. Patti, L. Spiccia, Eur. J. Inorg. Chem. 2014, 750–759 (2014)

    Article  Google Scholar 

  9. S. Sohila, R. Rajendran, Z. Yaakob, M.A.M. Teridi, K. Sopian, J. Mater. Sci.: Mater. Electron. 27, 2846–2851 (2016)

    Google Scholar 

  10. M. Fekete, W. Riedel, A.F. Patti, L. Spiccia, Nanoscale 6, 7585–7593 (2014)

    Article  Google Scholar 

  11. R. Gutkowski, D. Schafer, T.C. Nagaiah, J.E.Y. Heras, W. Busser, M. Muhler, W. Schuhmann, Electroanalysis 27, 285–292 (2015)

    Article  Google Scholar 

  12. D.K. Bora, A. Braun, RSC Adv. 4, 23562–23570 (2014)

    Article  Google Scholar 

  13. F.O. Bakare, W. Mahfoz, M.A. Aziz, M.N. Shaikh, A.S. Hakeem, M. Oyam, Z.H. Yamani, J. Electrochem. Soc. 163, H24–H29 (2016)

    Article  Google Scholar 

  14. Z.C. Chang, S.C. Liang, Mater. Metall. Eng. 8, 422–424 (2014)

    Google Scholar 

  15. M.A. Aziz, M. Sohail, M. Oyama, W. Mahfoz, Electroanalysis 27, 1268–1275 (2015)

    Article  Google Scholar 

  16. M.I. Ahmed, M.A. Aziz, A. Helal, M.N. Shaikh, J. Electrochem. Soc. 163, D277–D281 (2016)

    Article  Google Scholar 

  17. C.C.P. Cid, E.R. Spadaa, M.L. Sartorelli, Appl. Surf. Sci. 273, 603–606 (2013)

    Article  Google Scholar 

  18. C.-H. Hsu, D.-H. Chen, Nanoscale Res. Lett. 7, (2012) http://www.nanoscalereslett.com/content/7/1/593

  19. S. Tabassum, E. Yamasue, H. Okumura, K.N. Ishihara, J. Mater. Sci.: Mater. Electron. 25, 4883–4888 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support from King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM): Project No. 14-ENV332-04, as part of the National Science, Technology and Innovation Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Abdul Aziz or M. Qamar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, M.A., Ahmed, M.I., Qamar, M. et al. Photoelectrochemical investigation of bare transparent conducting oxides for water oxidation. J Mater Sci: Mater Electron 27, 10325–10329 (2016). https://doi.org/10.1007/s10854-016-5116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5116-y

Keywords

Navigation