Skip to main content
Log in

Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the fabrication of the uniform LiCoO2 cathode material by a two-step approach in which Co3O4 is prepared by a simple calcination of the mixture of the Co(NO3)2 and flour and then transformed into nanostructured LiCoO2 by solid state reaction at 750 °C for 2 h. The structure and morphology of pristine LiCoO2 and LiCoO2 derived from the flour are characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscope. The electrochemical performances of the material of as-obtained LiCoO2 are investigated by galvanostatic test, cyclic voltammetry and AC impedance measurements, which show that the introduction of the flour significantly decrease the charge-transfer resistance of LiCoO2. The LiCoO2 treated by flour delivers a good electrochemical performance, showing an initial discharge capacity of 138 mAh g−1 at the current density of 100 mA g−1 and then stabilized at 116 mAh g−1 after 100 cycles. Meanwhile, the time of the solid reaction state in this work is significantly shorter compared with the traditional approach of the preparation of LiCoO2, meaning the energy consumption in fabricating LiCoO2 is significantly reduced and promoting it to realize the low-cost production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.X. Tang, Y.Y. Zhang, J.Y. Deng, D.P. Qi, W.R. Leow, J.Q. Wei, S.Y. Yin, Z.L. Dong, R. Yazami, Z. Chen, X.D. Chen, Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 53, 13488–13492 (2014)

    Article  Google Scholar 

  2. X.L. Xiao, X.F. Liu, L. Wang, H. Zhao, Z.B. Hu, X.M. He, Y.D. Li, LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 5, 395–401 (2012)

    Article  Google Scholar 

  3. T. Cao, D. Fang, L. Liu, Z. Luo, Q. Wang, L. Dong, C. Xiong, Nanosheets-based ZnO–NiO microspheres for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 26, 5279–5286 (2015)

    Article  Google Scholar 

  4. J. Liang, D.H. Wu, M. Hu, Y. Tian, J.P. Wei, Z. Zhou, Could Li/Ni disorder be utilized positively? Combined experimental and computational investigation on pillar effect of Ni at Li sites on LiCoO2 at high voltages. Electrochim. Acta 146, 784–791 (2014)

    Article  Google Scholar 

  5. A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996)

    Article  Google Scholar 

  6. J.M. Chen, Y.D. Cho, C.L. Hsiao, G.T.K. Fey, Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells. J. Power Sources 189, 279–287 (2009)

    Article  Google Scholar 

  7. Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang, Electrochemical evaluation and structural characterization of commercial LiCoO2 surfaces modified with MgO for lithium-ion batteries. J. Electrochem. Soc. 149, A466–A471 (2002)

    Article  Google Scholar 

  8. E. Jung, Y.J. Park, Suppression of interface reaction of LiCoO2 thin films by Al2O3-coating. J. Electroceram. 29, 23–28 (2012)

    Article  Google Scholar 

  9. J.H. Woo, J.E. Trevey, A.S. Cavanagh, Y.S. Choi, S.C. Kim, S.M. George, K.H. Oh, S.H. Lee, Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. J. Electrochem. Soc. 159, A1120–A1124 (2012)

    Article  Google Scholar 

  10. X. Dai, L. Wang, J. Xu, Y. Wang, A. Zhou, J. Li, Improved electrochemical performance of LiCoO2 electrodes with ZnO coating by radio frequency magnetron sputtering. ACS Appl. Mater. Interfaces 6, 15853–15859 (2014)

    Article  Google Scholar 

  11. G.Q. Liu, H.T. Kuo, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen, Study of electrochemical properties of coating ZrO2 on LiCoO2. J. Alloys Compd. 496, 512–516 (2010)

    Article  Google Scholar 

  12. Y.J. Kim, J. Cho, T.J. Kim, B. Park, Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J. Electrochem. Soc. 150, A1723–A1725 (2003)

    Article  Google Scholar 

  13. Y.J. Kim, T.J. Kim, J.W. Shin, B. Park, J. Cho, The effect of Al2O3 coating on the cycle life performance in thin-film LiCoO2 cathodes. J. Electrochem. Soc. 149, A1337–A1341 (2002)

    Article  Google Scholar 

  14. J. Cho, T.G. Kim, C. Kim, J.G. Lee, Y.W. Kim, B. Park, Comparison of Al2O3-and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J. Power Sources 146, 58–64 (2005)

    Article  Google Scholar 

  15. Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008)

    Article  Google Scholar 

  16. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium bat teries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  Google Scholar 

  17. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H.S. Zhou, I. Honma, Nano size effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)

    Article  Google Scholar 

  18. X. Qian, X. Cheng, Z.Y. Wang, X.J. Huang, R. Guo, D.L. Mao, C.K. Chang, W.J. Song, The preparation of LiCoO2 nanoplates via a hydrothermal process and the investigation of their electrochemical behavior at high rates. Nanotechnology 20, 115608 (2009)

    Article  Google Scholar 

  19. D.S. Wang, X.L. Ma, Y.G. Wang, L. Wang, Z.Y. Wang, W. Zheng, X.M. He, J. Li, Q. Peng, Y.D. Li, Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 3, 1–7 (2010)

    Article  Google Scholar 

  20. W.B. Yue, A.H. Hill, A. Harrison, W.Z. Zhou, Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chem. Commun. 24, 2518–2520 (2007)

    Article  Google Scholar 

  21. B.Z. Tian, X.Y. Liu, L.A. Solovyov, Z. Liu, H.F. Yang, Z.D. Zhang, S.H. Xie, F.Q. Zhang, B. Tu, C.Z. Yu, O. Terasaki, D.Y. Zhao, Facile synthesis and characterization of novel mesopororous and mesorelief oxides with gyroidal structures. J. Am. Chem. Soc. 126, 865–875 (2004)

    Article  Google Scholar 

  22. Y.Q. Wang, C.M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schuth, Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic Ia3d mesoporous silica. Adv. Mater. 17, 53–56 (2005)

    Article  Google Scholar 

  23. S.C. Laha, R. Ryoo, Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun. 17, 2138–2139 (2003)

    Article  Google Scholar 

  24. F. Jiao, J.C. Jumas, M. Womes, A.V. Chadwick, A. Harrison, P.G. Bruce, Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J. Am. Chem. Soc. 128, 12905–12909 (2006)

    Article  Google Scholar 

  25. F. Jiao, K.M. Shaju, P.G. Bruce, Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 44, 6550–6553 (2005)

    Article  Google Scholar 

  26. J. Cabana, T. Valdés-Solís, M.R. Palacín, J. Oró-Solé, A. Fuertes, G. Marbán, A.B. Fuertes, Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. J. Power Sources 166, 492–498 (2007)

    Article  Google Scholar 

  27. S. Lim, C.S. Yoon, J. Cho, Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mater. 20, 4560–4564 (2008)

    Article  Google Scholar 

  28. D.Y. Zhao, J.Y. Sun, Q.Z. Li, G.D. Stucky, Morphological control of highly ordered mesoporouse silica SBA-15. Chem. Mater. 12, 275–279 (2000)

    Article  Google Scholar 

  29. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmidt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  Google Scholar 

  30. A.B. Dias, C.M.O. Müller, F.D.S. Larotonda, J.B. Laurindo, Biodegradable films based on rice starch and rice flour. J. Cereal Sci. 51, 213–219 (2010)

    Article  Google Scholar 

  31. W.P. Tang, H. Kanoh, K. Ooi, Preparation of lithium cobalt oxide by LiCl flux method for lithium rechargeable batteries. Electrochem. Solid State Lett. 1, 145–146 (1998)

    Article  Google Scholar 

  32. Y. Zhang, JOu Li Chen, J. Wang, B.Z. Zheng, H.Y. Yuan, Y. Guo, D. Xiao, Improving the performance of a LiFePO4 cathode based on electrochemically cleaved graphite oxides with high hydrophilicity and good conductivity. J. Mater. Chem. A 1, 7933–7941 (2013)

    Article  Google Scholar 

  33. S. Jeong, S. Park, J. Cho, High-performance, layered, 3D-LiCoO2 cathodes with a nanoscale Co3O4 coating via chemical etching. Adv. Energy Mater. 1, 368–372 (2011)

    Article  Google Scholar 

  34. H. Yan, X. Huang, Z.H. Lu, H. Huang, R.J. Xue, L.Q. Chen, Microwave synthesis of LiCoO2 cathode materials. J. Power Sources 68, 530–532 (1997)

    Article  Google Scholar 

  35. Y.J. Kim, H. Kim, B. Kim, D. Ahn, J.G. Lee, T. Kim, D. Son, J. Cho, Y. Kim, B. Park, Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating. Chem. Mater. 15, 1505–1511 (2003)

    Article  Google Scholar 

  36. L. Li, R. Chen, F. Sun, F. Wu, J. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 108, 220–225 (2011)

    Article  Google Scholar 

  37. N. Pentyala, R.K. Guduru, P.S. Mohanty, Binder free porous ultrafine/nano structured LiCoO2 cathode from plasma deposited cobalt. Electrochim. Acta 56, 9851–9859 (2011)

    Article  Google Scholar 

  38. W.S. Yoon, S.H. Ban, K.K. Lee, K.B. Kim, M. Kim, J.M. Lee, Electrochemical characterization of layered LiCoO2 films prepared by electrostatic spray deposition. J. Power Sources 97, 282–286 (2001)

    Article  Google Scholar 

  39. Y.C. Liu, S.P. Wang, D. Tao, Y. Dai, J.X. Yu, Electrochemical characterization for lithium vanadium phosphate with different calcination temperatures prepared by the sol–gel method. Mater. Charact. 107, 189–196 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the Chengdu University new faculty start-up funding (No. 208191503) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junke Ou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Yang, L. & Xi, X. Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J Mater Sci: Mater Electron 27, 9008–9014 (2016). https://doi.org/10.1007/s10854-016-4933-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4933-3

Keywords

Navigation