Skip to main content
Log in

Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles were studied using ac impedance spectroscopy and magnetic properties measurement system or quantum design superconducting quantum interference device. Results showed that dielectric constant (ε r ), dielectric loss (ε″), and ac electrical conductivity (σ AC ) are strongly frequency dependent. A decrease in frequency was accompanied with an increase in ε r and ε″ values, whereas, a decrease in the dielectric constant was observed with the increase of Ni co-doping concentration. It was found that the dielectric constant and dielectric loss values decrease, whilst AC electrical conductivity increases with increase in co-doping concentration. Magnetization measurements revealed that the Ni co-doped SnO2 samples exhibits room temperature ferromagnetism. The results illustrate that (Co, Ni) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those of co-doped samples reported previously, indicating that these (Co, Ni) co-doped SnO2 materials can be suitable for the purpose of high frequency device and spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.A. Prinz, Magnetoelectronics. Science 282, 1660 (1998)

    Article  Google Scholar 

  2. W. Prellier, A. Fouchet, B. Mercey, Oxide-diluted magnetic semiconductors: a review of the experimental status. J. Phys. Condens. Matter. 15, R1583 (2003)

    Article  Google Scholar 

  3. N.N. Lathiotakis, A.N. Andriotis, M. Menon, Codoping: a possible pathway for inducing ferromagnetism in ZnO. Phys. Rev. B 78, 193311 (2008)

    Article  Google Scholar 

  4. J.M.D. Coey, K. Wongsaprom, J. Alaria, M. Venkatesan, Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D Appl. Phys. 41, 134012 (2008)

    Article  Google Scholar 

  5. R. Khan, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4517-2

    Google Scholar 

  6. R. Khan, Zulfiqar, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 27, 4003–4010 (2016)

    Article  Google Scholar 

  7. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol–gel method. J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  8. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ . Phys. Rev. Lett. 91, 077205 (2003)

    Article  Google Scholar 

  9. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  10. J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. J. Am. Chem. Soc. 126, 11640 (2004)

    Article  Google Scholar 

  11. F.H. Aragón, J.A.H. Coaquira, P. Hidalgo, S.L.M. Brito, D. Gouvea, R.H.R. Castro, Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J. Phys. Condens. Matter. 22, 496003 (2010)

    Article  Google Scholar 

  12. D.H. Kim, S.I. Woo, S.H. Moon, H.D. Kim, B.Y. Kim, J.H. Cho, Y.G. Joh, E.C. Kim, Effect of Co/Fe co-doping in TiO2 rutile prepared by solid state reaction. Solid State Commun. 136, 554 (2005)

    Article  Google Scholar 

  13. K. Nomura, C.A. Barrero, K. Kuwano, Y. Yamada, T. Saito, E. Kuzmann, 57Fe Mössbauer study of sol–gel synthesized Sn1−x−yFexSbyO2−δ powders. Hyperfine Interact. 191, 25 (2009)

    Article  Google Scholar 

  14. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method as a catalyst for the hydrogenation of styrene. J. Chin. Chem. Soc. 57, 222 (2010)

    Article  Google Scholar 

  15. Y.H. Xiao, S.H. Ge, L. Xi, Y. Zuo, X.Y. Zhou, L. Zhang, G. Wang, X.F. Han, Z.C. Wen, Structure, optical, and magnetic properties of rutile Sn1−x Mn x O2 thin films. Appl. Surf. Sci. 255, 7981 (2009)

    Article  Google Scholar 

  16. P.I. Archer, P.V. Radovanovic, S.M. Heald, D.R. Gamelin, Low-temperature activation and deactivation of high-Curie-temperature ferromagnetism in a new diluted magnetic semiconductor: Ni2+-doped SnO2. J. Am. Chem. Soc. 127, 14479 (2005)

    Article  Google Scholar 

  17. Y.F. Li, R. Deng, Y.F. Tian, B. Yao, T. Wu, Role of donor–acceptor complexes and impurity band in stabilizing ferromagnetic order in Cu-doped SnO2 thin films. Appl. Phys. Lett. 100, 172402 (2012)

    Article  Google Scholar 

  18. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661–1665 (2005)

    Article  Google Scholar 

  19. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  20. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  21. P.S. Szu, Y.C. Lin, AC impedance studies of copper doped silica glass. Phys. Chem. Mater. 82, 295–300 (2003)

    Article  Google Scholar 

  22. O. Pakma, N. Serinl, T. Serin, S. Altında, Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2/p-Si/p+ (MOS) structures. J. Phys. D Appl. Phys. 41, 215103 (2008)

    Article  Google Scholar 

  23. C.H. Ho, C.D. Liu, C.H. Hsieh, K.H. Hsieh, S.N. Lee, High dielectric constant polyaniline/poly(acrylic acid) composites prepared by in situ polymerization. Synth. Metals 158, 630–637 (2008)

    Article  Google Scholar 

  24. H. Zhang, D. Wang, V. Hu, X. Kang, H. Liu, Synthesis and magnetic properties of Sn1−x Co x O2 nanostructures and their application in gas sensing. Sens. Actuators B 184, 288–294 (2013)

    Article  Google Scholar 

  25. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol–gel method. J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  26. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys. Rev. B 72, 075203 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Rajwali Khan and Zulfiqar would like thankful to the Department of Physics, Islamia College Peshawar China; Abdul Wali Khan University, Mardan, Pakistan, and Harare Institute of Technology, Harare, Zimbabwe for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Fashu, S. et al. Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J Mater Sci: Mater Electron 27, 7725–7730 (2016). https://doi.org/10.1007/s10854-016-4759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4759-z

Keywords

Navigation